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Task 1 : Group These Set of Document into 3
(Groups based on meaning

Docl : Health , Medicine, Doctor
Doc 2 : Machine Learning, Computer
Doc 3 : Environment, Planet

Doc 4 : Pollution, Climate Crisis

Doc 5 : Covid, Health , Doctor
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Task 2: Topic modeling

* Provides a summary of a corpus.

* n tweets containing the keyword “bullying”,
“bullied”, etc.

e Extracts k topics: each topic is a list of words with
importance weights.

* A set of words that co-occurs frequently
throughout.

Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, Amy Bellmore, “Learning from Bullying Traces in Social Media”
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What is unsupervised learning?

* Uncovering structures in unlabeled data

 What can we expect to learn?
e Clustering: obtain partition of the data that are well-separated.
e can be viewed as a preliminary classification without predefined class labels.

 Components: extract common components that compose data points.

* e.g., topic modeling given a set of articles: each article talks about a few topics => extract the set of
topics that appears frequently.

* Usage
* As a summary of the data
» Exploratory data analysis: what are the patterns we can get even without labels?

e Often used as a ‘preprocessing techniques’
e e.g., extract useful features using “gaussian mixture model” (will be covered later)
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Clustering

* Input: k: the number of clusters (hyperparameter) - =
-y y 4 \
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SN e



Application: Clustering for feature extraction

Feature extraction: histogram features (bag of visual words)

A set of images: S = {xq, ..., X}

Cut up each x; € R into different parts x(l), e xl.(m) € RP

i

* e.g., small (overlapping) patches of an image

Notation: [n] :== {1, ..., n}

<)

Pool all the patches together: P =={ i } ], jelm]
i€|n],jelm

()

i

Run clustering on P with #clusters=k = for each x;””, we have a cluster assignment A (x-(j)) € |k]

Generate the feature vector of x; as the histogram of {A (x.(j))}
JE[m]

l

* i.e.,, z = (24, ..., Z;) Where z, is the count of the cluster £

https://towardsdatascience.com/bag-of-visual-words-in-a-nutshell-9ceea97ceOfb 10



k-means clustering

* |dea: to partition the data, it would be great if someone gives us k reasonable centroids ¢4, ..., Cg,
since then we can partition the data with them.

Alx) = argjrg[i%”x — cj||2

* But we don’t have those centroids => Let’s find them with an optimization formulation.

2
. . . _ n . - oy
minimize f(cy, ..., cx), Where f(cq, ..., Cx) = Xii=yq mln”x — (:j||2 .-~ AR
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Special case: k=1

] n ' AP : n 2
) c?.l.,IClkZizljr'g[ll?]”xl CJ”Z =7 mclnzi=1”xl cllz

« Let F(c) = X ,llx; — c||5 convex; minimizer c* satisfies that VF (¢*) = 0

1
=> Z?=1(xi - C*) =0=>c" = o ’{l=1 Xi
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Fork = 2

C1,-uCk

Lloyd’s algorithm: solve it approximately (heuristic)

Observation: The chicken-and-egg problem.
* Cluster center location depends on the cluster assignment
e Cluster assignment depends on cluster location

Very common heuristic (that may or may not be the best thing to do)

Andrea Vattani, “the hardness of k-means clustering in the plane”

C e : 2
minimize f (cy, ..., Cx), Where f(cq, ..., Cx) = Xieq rg[llgnx — cj||2 => NP-hard even when d = 2
J

(but people just say it is k-
means clustering algorithm)
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Initialization

Arbitrary/random initialization of ¢; and c,

14



Iteration 1

(A) update the cluster assignments.

—2 0 2

(B) Update the centroids {c;}
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lteration 2

2

(A) update the cluster assignments.

—2 0 2
(B) Update the centroids {c;}
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lteration 3

-2 0 2

(A) update the cluster assignments.

—2 0 2

(B) Update the centroids {c;}
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Ilteration 4

2

(A) update the cluster assignments.

(B) Update the centroids {c;}
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Next lecture (10/10)

* Dimensionality reduction; Principal component analysis (PCA)
* Probabilistic machine learning; naive Bayes algorithm

* Assigned reading: CIML Chap. 15

19



Lloyd’s algorithm for k-means clustering

Input: k: num. of clusters, S = {x, ..., x,,}
[Initialize] Pick c4, ..., ¢;, as randomly selected points from S (see next slides for alternatives)

For t=1,2,...,max_iter

° - 2
« [Assignments] Vx €S, a;(x)=arg Jrg[llgnx — Cj||2

e Ift+#1 AND a;(x) =a;_,(x),Vx €S
* break 2 0

* [Centroids] Vj € |k], c;< average({x € S:a,(x) =j}) %’
ke 2. 8
Output: ¢y, ..., ¢, and {a, (x;) }iem)




Lloyd’s algorithm: cost minimization perspective

Key idea: solving the optimization problem by reformulation and alternating minimization:

Reformulation: denote by ¢ := (cq, ..., k), Z == (24, ..., Zy);
. - - - > 2
f(c) = mzmg(c, Z), where g(¢,7) = Y1 ||x; — czl.||2

suffices to solve

min g(c, Z) %’
C,Z 5 .
e Fort=1,2,..,T: ﬁ"

 Update the cluster assignments: Z; « argmin; g(C;_4,2)

* Update the centroids: ¢; « argming g(c, z;) @

: N : 5 o : : %
Observation: objective function g(c;, z;) decreases monotonically in t gx




Issue 1: Unreliable solution

You usually get suboptimal solutions
You usually get different solutions every time you run.

Standard practice: Run it 50 times and take the one that achieves the smallest objective function

2
e Recall: minimize f (¢4, ..., ¢ ), where f(cq,...,c) = Y. min||lx — ¢;

Or, change the initialization (next slide)
* |dea: ensure that we pick a widespread ¢4, ..., Ck

22



Two alternative initializations.

* Furthest-first traversal = Sequentially choose ¢; that are the farthest from the previously-chosen.

* Pickc; € {x4, ..., x5} arbitrarily (or randomly)

e Forj=2,..,k
* Pickc; € R? as a point in {xy, ..., x,} that maximizes the squared distances to cy, ..., Cj—1-
cj = arg grel[argj,:rlr’l.ig_luxi —Cj/ ‘z
e k-means++ (Arthur and Vassilvitskii, 2007)
* Pickc; € {x4, ..., x,} uniformly at random
* Forj=2,..,k
* Define a distribution Vi € [n], [P(cj = x;) j,=r1r,1.i.3_1 llx; — ¢;r 15
» Draw ¢ from the distribution above. More likely to choose x; that is farthest

from already-chosen centroids.

=> has a mathematical guarantee that it will be better than an arbitrary starting point!

23



Issue 2: Choosing k

e L, = f(cq, ..., cy) for cy, ..., ¢, obtained by any k-means clustering algorithm

Objective function L

80000

GOO0D -

40000 4

20000 A

0
! ! ! ! ! ! ! !
1 2 k) 4 3 G T B ) 10
k

* Elbow method: see where you get saturation.
* Akaike information criterion (AIC): argminy, (Ek + de)
* Bayesian information criterion (BIC): argminy, (Ek + kd - log n)

https://medium.com/analytics-vidhya/how-to-determine-the-optimal-k-for-k-means-708505d204eb
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Kernelizing Lloyd’s algorithm

How to perform clustering with feature transformations ¢: X — RP?

Input: k: num. of clusters, S = {x4, ..., x,,}, kernel function K with feature map ¢
Idea: perform clustering over S = {¢(x,), ..., (x,,)} without explicitly evaluating ¢
[Initialize] Pick c4, ..., ¢, as randomly selected points from S

For t=1,2,...,max_iter

2 ()
* [Assignments] Vx €S, a;(x)=arg r_rel[i’g”qb(x) — Cj”§ %’
J 0 :’..":'.
e Ift#+#1 AND a,(x) =a;_,(x),Vx €S | ¥
* break 2 0 )
* [Centroids] Vj € [k], c;j< average({¢(x): x € S,a,(x) =j}) 2| © %’
o

Output: ¢y, ..., ¢ and {a.(x;) }ien] 0 gx;;,

25



Kernelizing Lloyd’s algorithm (cont’d)

2
* How to calculate ||qb(x) — cj||2 without explicitly evaluating ¢?

: 1
* Key observation: ¢; always takes the form ¢; = aZies ¢ (x;) for some S, and therefore has the

form ¢; = Xizy aip(x)

* Therefore,

600 = gi|[S = (D), p ) — 2{p (), Ty @b (x)) + (B i (x) , By i (x)
— K(X, X) — 2 Z?=1K(X, xi) + ZLZ] aiajK(xi'xj)

 Efficiently computable: only requires evaluating K now

26



Clustering as cost minimization: additional remarks

* k-means objective function is not the only one used in practice

fer, i) = Ty minllx = g

* Alternative popular cost functions:

. . _ n .
k-median: f(cq,...,Cx) = Xiizq m1n||x — cj”2 .
~ o
kecenter: f(c, ., c) inllx g TR £
-center: f(cq,...,Cr) = max min|(x — ¢; o HA
1 K i jelk] J 17 I o X N
1 e O
\ ® PY ./’ /.‘.: N\
. . . \\ 7 Io ).( ol
* Furthermore, we don’t have to restrict to using the £, metric == ‘o
-
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Hierarchical clustering

28



Hierarchical clustering — getting rid of tuning k

* |dea: produce a tree structure over objects

e Can prune the tree appropriately to fit application needs (e.g. cluster radius / size requirements)

29



Hierarchical clustering

* Method 1: Top-down (divisive)
e k-means clustering with k=2

* Do this recursively on each resulting cluster (no .
more recursion when there is only one pointin a hagomeraiive
cluster)

* You now have a binary tree.

Divisive
methods

 Method 2: bottom-up (agglomerative, more popular)

 Start with every point x; being a singleton cluster

* Repeatedly pick a pair of clusters with the smallest
‘distance’

e How do we define a distance between two clusters?

30




Agglomerative clustering: Distance between two clusters

Single Linkage

* Single linkage
« dist(C,C") = min |lx —x'||, O ‘
xec,x'ec’

* Complete linkage
e dist(C,C") = max |[lx—x'||, Complete Linkage

xec,x'ec’
* Average linkage

_ 1
o dist(C,C") = mzxec Yrecllx — x|
Average Linkage

https://girke.bioinformatics.ucr.edu/GEN242/tutorials/rclustering/rclustering/ 31



Dimensionality Reduction
and Principal Component Analysis (PCA)



Dimensionality reduction: motivation

* Data compression: ldentifies important components that can reconstruct data points

 |dentify informative feature transformations

* Visualization & visual analytics: high-dim data -> 2d => easy to plot

0.2- .
.. [ #
0.1 ) *
= Ty 1 - Species
B e S, A
oo o S J N
= L I » *  versicols
&~ P, il M !' * .
E - LA i . » * virginica
0.1
e ®
L] @ -
L ]
0.2- . .
01 0.0 0.1
PC1 (72.96%)

Iris flower dataset (4 features)
https://cran.r-project.org/web/packages/ggfortify/vignettes/plot_pca.html 3



PCA: Introduction

e Task:
* Given: raw feature vectors x;, ..., x,, € R%, target dimension k

 Output: a k-dimensional subspace represented by an orthonormal basis q4, ..., q;, € R? that
the projections of datapoints with it would maximally preserve the "“spread”.

12

* Application: dimensionality reduction 10]

* Closely related to projections g

=6 -2 =2 0 2z 4 6 8§ 10

if k=1, which basis should we choose?34



Principal components: usage

* Compressing the data:

cletQ=| . |eRwxk

—qk — .
q1 Xi
« x; € R? mappedto ‘encoding’ z; = Qx; =| .. |€RK
T
Ak Xi
e Resconstructing the data (‘decoding’) % - Jf
|
e Given z;, reconstruct x; withX; = q¢1 - qx |z; = Q" z;

|
e Reconstruction error: x; — X; = x; — Q' Qx;
* If k = d, then perfect reconstruction (X; = x;)

35



Projection

« Why reconstructing using Q" z;?

~q, —
* Given orthonormal Q = < >,
—qp —
|

gy —
Q'Qx =491 - i ( >x=z(qiTx)qi
— 4 — i

ARSI R
J NN
\

projection matrix II = Z{il qiq;

is also the projection of x to subspace span(qy, ..., qx)

* Projection Objective: find a k-dimensional projection matrix II s.t. the average residual squared error
(reconstruction error) is minimized:
n
(e = 13
n\ . i ill2
=1

\ -

\
\

36



Projection when k=1

* Objective:

argmin ~ anl aq x|

q: IICIII 1 n

Observation: qq " x; and x; — qq ' x; are orthogonal, and sum to x;

Pythagorean theorem => ||x; — quxl-”z = |Ix;1I% — ||quxi||z = |Ix;|I3

PCA optimization problem is thus equivalent to

argmax— z (q"x;)?

q:llqll=1 M

In matrix form, argmax q " (lXTX) q
a:llqll=1 "

5 — (qTxi)z

37



PCA as variance maximization

n
1
argmax—z:(qTxi)2
alali=1 &2

—_
[}

—-
(=)
T

¢ =3 1(q"x)? = Es[(qTx)?]

* If data is centered, i.e., E¢[x]

| I
(=} > N (=} N - [*)) (o]
T T T T T T T

0
= the objective = varg[q'x] = E5[(¢"x — Es[q " x])?]

28 6 -2 -2 0 2 4 6 8 10

* PCA on centered data & Finding direction g, such that the projected data
{q"x},es has the maximum variance

38



Figendecomposition for real symmetric matrices

e Fact: Every Symmetric real matrix A is guaranteed to have eigendecomposition with real

eigenvalues: p
— Z /\i'Uz"U,;r
1=1

A 1% A VT
(d x d) (d x d) (d x d) (d x d)

Convention: 4; = -+ = A4

For positive semi-definite A, A; = 0 for all i

Recall the definition of eigenvectors: Av; = A;v; Vi € [d]

_ . T _ ..
Here,V =| vy .. Vg | hasorthonormalcolumns,i.e.v; v; = I(i = j)

39



Variational characterization of the top eigenvector

* Claim: r”neﬁx g ' Aq has a maximizer ¢* = v,, with maximum objective value 1,
q:llqll=1

e Proof:recall A = Y1, Ljv;v] A

* (Maximum objective upper bound): For any unit vector g,
2
q"Aq =X, 4i(viq)” < A

2\ 4 .
since (a; = (v satisfies Y% . a; = 1 and a; = 0 for all i
l l q i=1 1=1%"1 l

* (The upper bound is achievable) g* = v, satisfies that ¢* ' Ag* = 1,

40



PCA with k

argmin znxl QQTxl” oorEal

QERka QTQ I n

01’\5“:
1 2 1 / o “Ywined
Equivalentto argmax - ™ a]leTx; _, le, argmax tr (QT (gXTX) Q),
QE]Rka,QTQ=I QERka,QTQ=I
where for B € R%*?, tr(B) = Y%, B;; is the trace of matrix B (Important property: tr(AB) = tr(BA))

* Variance maximization interpretation:
1 1 : : : )
* For centered data, Q' (; XTX) Q=- QT x)(QTx;)T is the covariance matrix of {Q "x;}’s
* PCA chooses Q with the “largest” variance on projected data

41



PCAwith k = 2

argmax tr(Q"A Q)
QERka,QTQ=I

Fact: optimal Q hasform Q" =| vy .. vV |, where A has eigendecomposition A = Z? AiviviT

* |In summary,
k-dimensional subspace with smallest reconstruction error

= k-dimensional subspace with the maximum total variance

= top-k eigenvectors of A = %XTX

42



/\Y‘ APC2

PCA pseudocode (with centering) % ece

~EEEAREER Y

kAR KoL |, 2o <>
KR K< RS <

Input: data matrix X € R™*¢

=

) > D

° 1 . — 1 n I __ . 0(\5"\‘9 e PCL
Centering: Let u = ~Di=1%i. Compute x; = x; — u, Vi € [n] . e P reduced
1 Sl o
» Compute the top k eigenvectors V = [vy, ..., vy ] of ~ 3L xi(x)T 'Z'A‘”M'; '
* Feature map: ¢p(x) = (vlT(x — ), .., vp (x — ,u)) € R¥ (k-dimensional embedding)
e (thm) Decorrelating property (aka “whitening”)
1
¢ ;Z?:l ¢(xl) — O
. %Z?zl ¢(xl)¢(xL)T — diag(/ll, . /1k) A; is the eigen value (paired with v;)

(optional) Reconstruction (the actual projection): apply 4 + Vo (x) € R?
e can be used as a "denoising”’ procedure.

https://towardsdatascience.com/pca-clearly-explained-how-when-why-to-use-it-and-feature-importance-a-guide-in-python-7c274582c37e 43



Example: MNIST dataset

PC1 vs PC2 for MNIST Images

10

30 -20 -10 0 10 20 0
PC 2 44

https://stats.stackexchange.com/questions/340175/why-is-t-sne-not-used-as-a-dimensionality-reduction-technique-for-clustering-or



Example: data compression

16 x 16 pixel images of handwritten 3s (as vectors in R*°)

Mean p and eigenvectors vi, vo, v3, vs
Mean A = 3.4-10° Ay = 2.8-10° A = 2.4-10° A =1.6-10°

L

27 D3

Reconstructions:

X k=1 k =10 k =50 k = 200

Only have to store kK numbers per image,
along with the mean p and k eigenvectors (256(k + 1) numbers)

45



Example: eigenfaces

. 1 T
The Yale Face Dataset; n = 165,d = 243 x 320 = 77760 Eigenvalues of A = o Li=1XiX;
Eigenspectrum of sample covariance

|
e
5 0.8
=
&
20.6
@
e
[}
NO0.4+
5
£
So0.2f

O 1 | 1 1
0 20 40 60 80 100

Index of eigenvalue

Wainwright, “High-dimensional statistics: an non-asymptotic viewpoint”; Yale Face Dataset
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Example: eigenfaces (cont’d)

The average face, along with the top 24 PCs (eigenfaces)

Wainwright, “High-dimensional statistics: an non-asymptotic viewpoint”; Yale Face Dataset

Reconstruction using the average face and the top PCs

47



PCA caveat

* The direction of maximizing variance is not necessarily useful for classification!

48



Next lecture (10/12)

* Probabilistic machine learning; naive Bayes algorithm

* Assigned reading: CIML Sections 9.1-9.3

49



