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Task 1 : Group These Set of Document into 3 
Groups based on meaning

Doc1 : Health , Medicine, Doctor

Doc 2 : Machine Learning, Computer

Doc 3 : Environment, Planet

Doc 4 : Pollution, Climate Crisis

Doc 5 : Covid, Health , Doctor
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Task 1 : Group These Set of Document into 3 
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Doc 5 : Covid, Health , Doctor
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Planet

Doc 4 : Pollution, Climate 
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Doc 2 : Machine 
Learning, Computer



Task 2: Topic modeling

• Provides a summary of a corpus.

• 𝑛 tweets containing the keyword “bullying”, 
“bullied”, etc.

• Extracts 𝑘 topics: each topic is a list of words with 
importance weights.

• A set of words that co-occurs frequently 
throughout.
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Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, Amy Bellmore, “Learning from Bullying Traces in Social Media”



What is unsupervised learning?

• Uncovering structures in unlabeled data

• What can we expect to learn?

• Clustering: obtain partition of the data that are well-separated.

• can be viewed as a preliminary classification without predefined class labels.

• Components: extract common components that compose data points.

• e.g., topic modeling given a set of articles: each article talks about a few topics => extract the set of 
topics that appears frequently.

• Usage

• As a summary of the data

• Exploratory data analysis: what are the patterns we can get even without labels?

• Often used as a ‘preprocessing techniques’

• e.g., extract useful features using “gaussian mixture model” (will be covered later)
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Clustering



Clustering

• Input: 𝑘: the number of clusters (hyperparameter)

𝑆 = {𝑥1, … , 𝑥𝑛}

• Output

• partition 𝐺𝑖 𝑖=1
𝑘 s.t. 𝑆 = ∪𝑖 𝐺𝑖 (disjoint union).

• often, we also obtain ‘centroids’

• Q: what would be a reasonable definition of centroids?
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Application: Clustering for feature extraction

• Feature extraction: histogram features (bag of visual words)

• A set of images:  𝑆 = 𝑥1, … , 𝑥𝑛

• Cut up each 𝑥𝑖 ∈ ℝ𝑑 into different parts 𝑥𝑖
(1)
, … , 𝑥𝑖

𝑚 ∈ ℝ𝑝

• e.g., small (overlapping) patches of an image

• Notation: 𝑛 ≔ {1,… , 𝑛}

• Pool all the patches together: 𝑃 ≔ 𝑥𝑖
𝑗

𝑖∈ 𝑛 ,𝑗∈ 𝑚

• Run clustering on 𝑃 with #clusters=𝑘 ⇒ for each 𝑥𝑖
𝑗

, we have a cluster assignment 𝐴 𝑥𝑖
𝑗

∈ [𝑘]

• Generate the feature vector of 𝑥𝑖 as the histogram of 𝐴 𝑥𝑖
𝑗

𝑗∈[𝑚]

• i.e., 𝑧 = 𝑧1, … , 𝑧𝑘 where 𝑧ℓ is the count of the cluster ℓ

10https://towardsdatascience.com/bag-of-visual-words-in-a-nutshell-9ceea97ce0fb



𝑘-means clustering

• Idea: to partition the data, it would be great if someone gives us 𝑘 reasonable centroids 𝑐1, … , 𝑐𝑘, 
since then we can partition the data with them.

• But we don’t have those centroids => Let’s find them with an optimization formulation.

minimize
𝑐1,…,𝑐𝑘

𝑓(𝑐1, … , 𝑐𝑘), where 𝑓 𝑐1, … , 𝑐𝑘 = σ𝑖=1
𝑛 min

𝑗∈ 𝑘
𝑥 − 𝑐𝑗 2

2
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𝐴 𝑥 = arg min
𝑗∈[𝑘]

𝑥 − 𝑐𝑗 2



Special case: 𝑘=1

• min
𝑐1,…,𝑐𝑘

σ𝑖=1
𝑛 min

𝑗∈[𝑘]
𝑥𝑖 − 𝑐𝑗 2

2
=>  min

𝑐
σ𝑖=1
𝑛 𝑥𝑖 − 𝑐 2

2

• Let 𝐹 𝑐 = σ𝑖=1
𝑛 𝑥𝑖 − 𝑐 2

2 convex; minimizer 𝑐∗ satisfies that ∇𝐹 𝑐∗ = 0

=> σ𝑖=1
𝑛 𝑥𝑖 − 𝑐∗ = 0 => 𝑐∗ =

1

𝑛
σ𝑖=1
𝑛 𝑥𝑖

12



For 𝑘 ≥ 2

• minimize
𝑐1,…,𝑐𝑘

𝑓(𝑐1, … , 𝑐𝑘), where 𝑓 𝑐1, … , 𝑐𝑘 = σ𝑖=1
𝑛 min

𝑗∈ 𝑘
𝑥 − 𝑐𝑗 2

2
=>  NP-hard even when 𝑑 = 2

• Lloyd’s algorithm: solve it approximately (heuristic)

• Observation: The chicken-and-egg problem.

• Cluster center location depends on the cluster assignment

• Cluster assignment depends on cluster location

• Very common heuristic (that may or may not be the best thing to do)
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(but people just say it is k-
means clustering algorithm)

Andrea Vattani, “the hardness of k-means clustering in the plane”



Initialization
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Arbitrary/random initialization of 𝑐1 and 𝑐2



Iteration 1
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(A) update the cluster assignments. (B) Update the centroids {𝑐𝑗}



Iteration 2

16

(A) update the cluster assignments. (B) Update the centroids {𝑐𝑗}



Iteration 3
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(A) update the cluster assignments. (B) Update the centroids {𝑐𝑗}



Iteration 4
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(A) update the cluster assignments. (B) Update the centroids {𝑐𝑗}



Next lecture (10/10)

• Dimensionality reduction; Principal component analysis (PCA)

• Probabilistic machine learning; naïve Bayes algorithm

• Assigned reading: CIML Chap. 15
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Lloyd’s algorithm for k-means clustering
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Input: 𝑘: num. of clusters, 𝑆 = {𝑥1, … , 𝑥𝑛}

[Initialize] Pick 𝑐1, … , 𝑐𝑘 as randomly selected points from 𝑆 (see next slides for alternatives)

For t=1,2,…,max_iter

• [Assignments] ∀𝑥 ∈ 𝑆, 𝑎𝑡(𝑥) = arg min
𝑗∈[𝑘]

𝑥 − 𝑐𝑗 2

2

• If t ≠ 1 AND 𝑎𝑡 𝑥 = 𝑎𝑡−1 𝑥 , ∀𝑥 ∈ 𝑆

• break

• [Centroids] ∀𝑗 ∈ 𝑘 , 𝑐𝑗← average 𝑥 ∈ 𝑆: 𝑎𝑡(𝑥) = 𝑗

Output: 𝑐1, … , 𝑐𝑘 and 𝑎𝑡 𝑥𝑖 𝑖∈[𝑛]



Lloyd’s algorithm: cost minimization perspective

• Key idea: solving the optimization problem by reformulation and alternating minimization: 

• Reformulation: denote by Ԧ𝑐 ≔ 𝑐1, … , 𝑐𝑘 , Ԧ𝑧 ≔ 𝑧1, … , 𝑧𝑛 ; 

𝑓 Ԧ𝑐 = min
Ԧ𝑧
𝑔 Ԧ𝑐, Ԧ𝑧 , where 𝑔 Ԧ𝑐, Ԧ𝑧 = σ𝑖=1

𝑛 𝑥𝑖 − 𝑐𝑧𝑖 2

2

suffices to solve 

min
Ԧ𝑐, Ԧ𝑧

𝑔 Ԧ𝑐, Ԧ𝑧

• For 𝑡 = 1,2,… , 𝑇:

• Update the cluster assignments: Ԧ𝑧𝑡 ← argmin Ԧ𝑧 𝑔 Ԧ𝑐𝑡−1, Ԧ𝑧

• Update the centroids: Ԧ𝑐𝑡 ← argmin Ԧ𝑐 𝑔 Ԧ𝑐, Ԧ𝑧𝑡

• Observation: objective function 𝑔 Ԧ𝑐𝑡 , Ԧ𝑧𝑡 decreases monotonically in t

21



Issue 1: Unreliable solution

• You usually get suboptimal solutions

• You usually get different solutions every time you run.

• Standard practice: Run it 50 times and take the one that achieves the smallest objective function

• Recall: minimize
𝑐1,…,𝑐𝑘

𝑓(𝑐1, … , 𝑐𝑘), where 𝑓 𝑐1, … , 𝑐𝑘 = σ𝑖=1
𝑛 min

𝑗∈ 𝑘
𝑥 − 𝑐𝑗 2

2

• Or, change the initialization (next slide)

• Idea: ensure that we pick a widespread 𝑐1, … , 𝑐𝑘

22



Two alternative initializations.

• Furthest-first traversal ⇒ Sequentially choose 𝑐𝑗 that are the farthest from the previously-chosen.

• Pick 𝑐1 ∈ {𝑥1, … , 𝑥𝑛} arbitrarily (or randomly)

• For 𝑗 = 2,… , 𝑘

• Pick 𝑐𝑗 ∈ ℝ𝑑 as a point in 𝑥1, … , 𝑥𝑛 that maximizes the squared distances to 𝑐1, … , 𝑐𝑗−1.

𝑐𝑗 = argmax
𝑖∈[𝑛]

min
𝑗′=1,…,𝑗−1

𝑥𝑖 − 𝑐𝑗′
2

2

• 𝒌-means++ (Arthur and Vassilvitskii, 2007)

• Pick 𝑐1 ∈ {𝑥1, … , 𝑥𝑛} uniformly at random

• For 𝑗 = 2,… , 𝑘

• Define a distribution ∀𝑖 ∈ 𝑛 , ℙ 𝑐𝑗 = 𝑥𝑖 ∝ min
𝑗′=1,…,𝑗−1

‖𝑥𝑖 − 𝑐𝑗′ ‖2
2

• Draw 𝑐𝑗 from the distribution above.

23

More likely to choose 𝑥𝑖 that is farthest 
from already-chosen centroids.

=> has a mathematical guarantee that it will be better than an arbitrary starting point!



Issue 2: Choosing k

• 𝐿𝑘 = 𝑓(𝑐1, … , 𝑐𝑘) for 𝑐1, … , 𝑐𝑘 obtained by any k-means clustering algorithm

• Elbow method: see where you get saturation.

• Akaike information criterion (AIC): argmin𝑘 𝐿𝑘 + 2𝑘𝑑

• Bayesian information criterion (BIC): argmin𝑘 𝐿𝑘 + 𝑘𝑑 ⋅ log 𝑛

24https://medium.com/analytics-vidhya/how-to-determine-the-optimal-k-for-k-means-708505d204eb

Objective function 𝐿𝑘



Kernelizing Lloyd’s algorithm
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How to perform clustering with feature transformations 𝜙:𝒳 → ℝ𝐷?

Input: 𝑘: num. of clusters, 𝑆 = {𝑥1, … , 𝑥𝑛}, kernel function 𝐾 with feature map 𝜙

Idea: perform clustering over ሚ𝑆 = {𝜙 𝑥1 , … , 𝜙 𝑥𝑛 } without explicitly evaluating 𝜙

[Initialize] Pick 𝑐1, … , 𝑐𝑘 as randomly selected points from ሚ𝑆

For t=1,2,…,max_iter

• [Assignments] ∀𝑥 ∈ 𝑆, 𝑎𝑡(𝑥) = arg min
𝑗∈[𝑘]

𝜙(𝑥) − 𝑐𝑗 2

2

• If t ≠ 1 AND 𝑎𝑡 𝑥 = 𝑎𝑡−1 𝑥 , ∀𝑥 ∈ 𝑆

• break

• [Centroids] ∀𝑗 ∈ 𝑘 , 𝑐𝑗← average 𝜙 𝑥 : 𝑥 ∈ 𝑆, 𝑎𝑡(𝑥) = 𝑗

Output: 𝑐1, … , 𝑐𝑘 and 𝑎𝑡 𝑥𝑖 𝑖∈[𝑛]



Kernelizing Lloyd’s algorithm (cont’d)

• How to calculate 𝜙(𝑥) − 𝑐𝑗 2

2
without explicitly evaluating 𝜙?

• Key observation: 𝑐𝑗 always takes the form 𝑐𝑗 =
1

|𝑆|
σ𝑖∈𝑆𝜙(𝑥𝑖) for some 𝑆 , and therefore has the 

form 𝑐𝑗 = σ𝑖=1
𝑛 𝛼𝑖𝜙(𝑥𝑖)

• Therefore, 

𝜙(𝑥) − 𝑐𝑗 2

2
= 𝜙 𝑥 ,𝜙 𝑥 − 2 𝜙 𝑥 ,σ𝑖=1

𝑛 𝛼𝑖𝜙 𝑥𝑖 + σ𝑖=1
𝑛 𝛼𝑖𝜙 𝑥𝑖 , σ𝑖=1

𝑛 𝛼𝑖𝜙 𝑥𝑖

= 𝐾 𝑥, 𝑥 − 2σ𝑖=1
𝑛 𝐾 𝑥, 𝑥𝑖 + σ𝑖σ𝑗 𝛼𝑖𝛼𝑗𝐾(𝑥𝑖, 𝑥𝑗)

• Efficiently computable: only requires evaluating 𝐾 now

26



Clustering as cost minimization: additional remarks

• k-means objective function is not the only one used in practice

𝑓 𝑐1, … , 𝑐𝑘 = σ𝑖=1
𝑛 min

𝑗∈ 𝑘
𝑥 − 𝑐𝑗 2

2

• Alternative popular cost functions: 

k-median: 𝑓 𝑐1, … , 𝑐𝑘 = σ𝑖=1
𝑛 min

𝑗∈ 𝑘
𝑥 − 𝑐𝑗 2

k-center: 𝑓 𝑐1, … , 𝑐𝑘 = max
𝑖

min
𝑗∈ 𝑘

𝑥 − 𝑐𝑗 2

• Furthermore, we don’t have to restrict to using the ℓ2 metric

27



28

Hierarchical clustering



Hierarchical clustering – getting rid of tuning k

• Idea: produce a tree structure over objects

• Can prune the tree appropriately to fit application needs (e.g. cluster radius / size requirements) 

29



Hierarchical clustering

• Method 1: Top-down (divisive)

• 𝑘-means clustering with 𝑘=2

• Do this recursively on each resulting cluster (no 
more recursion when there is only one point in a 
cluster)

• You now have a binary tree.

• Method 2: bottom-up (agglomerative, more popular)

• Start with every point 𝑥𝑖 being a singleton cluster

• Repeatedly pick a pair of clusters with the smallest 
‘distance’

• How do we define a distance between two clusters?

30



Agglomerative clustering: Distance between two clusters

• Single linkage

• dist 𝐶, 𝐶′ = min
𝑥∈𝐶,𝑥′∈𝐶′

𝑥 − 𝑥′ 2

• Complete linkage

• dist 𝐶, 𝐶′ = max
𝑥∈𝐶,𝑥′∈𝐶′

𝑥 − 𝑥′ 2

• Average linkage

• dist 𝐶, 𝐶′ =
1

𝐶 ⋅|𝐶′|
σ𝑥∈𝐶σ𝑥′∈𝐶 𝑥 − 𝑥′ 2

31https://girke.bioinformatics.ucr.edu/GEN242/tutorials/rclustering/rclustering/
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Dimensionality Reduction 
and Principal Component Analysis (PCA)



Dimensionality reduction: motivation

• Data compression: Identifies important components that can reconstruct data points

• Identify informative feature transformations

• Visualization & visual analytics: high-dim data -> 2d => easy to plot

33
https://cran.r-project.org/web/packages/ggfortify/vignettes/plot_pca.html

Iris flower dataset (4 features)



PCA: Introduction 

• Task:

• Given: raw feature vectors 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑑, target dimension 𝑘

• Output: a 𝑘-dimensional subspace represented by an orthonormal basis 𝑞1, … , 𝑞𝑘 ∈ ℝ𝑑 that 
the projections of datapoints with it would maximally preserve the ``spread’’. 

• Application: dimensionality reduction

• Closely related to projections

34
if k=1, which basis should we choose?



Principal components: usage

• Compressing the data: 

• Let 𝑄 =

− 𝑞1 −
…

− 𝑞𝑘 −
∈ ℝ𝑑×𝑘

• 𝑥𝑖 ∈ ℝ𝑑 mapped to ‘encoding’ 𝑧𝑖 = 𝑄𝑥𝑖 =
𝑞1
⊤𝑥𝑖
…

𝑞𝑘
⊤𝑥𝑖

∈ ℝ𝑘

• Resconstructing the data (‘decoding’)

• Given 𝑧𝑖, reconstruct 𝑥𝑖 with 𝑥𝑖 =
| ⋯ |
𝑞1 … 𝑞𝑘
| ⋯ |

𝑧𝑖 = 𝑄⊤𝑧𝑖

• Reconstruction error: 𝑥𝑖 − 𝑥𝑖 = 𝑥𝑖 −𝑄⊤𝑄𝑥𝑖
• If 𝑘 = 𝑑, then perfect reconstruction (𝑥𝑖 = 𝑥𝑖)

35



Projection
• Why reconstructing using 𝑄⊤𝑧𝑖?

• Given orthonormal 𝑄 =

− 𝑞1 −
…

− 𝑞𝑘 −
, 

𝑄⊤𝑄𝑥 =
| ⋯ |
𝑞1 … 𝑞𝑘
| ⋯ |

⋅

− 𝑞1 −
…

− 𝑞𝑘 −
𝑥 =

𝑖

(𝑞𝑖
⊤𝑥)𝑞𝑖

is also the projection of 𝑥 to subspace span(𝑞1, … , 𝑞𝑘)

• Projection Objective: find a 𝑘-dimensional projection matrix Π s.t. the average residual squared error 
(reconstruction error) is minimized:

1

𝑛


𝑖=1

𝑛

𝑥𝑖 − Π𝑥𝑖 2
2

36

projection matrix Π = σ𝑖=1
𝑘 𝑞𝑖𝑞𝑖

⊤



Projection when k=1

• Objective:

argmin
𝑞: 𝑞 =1

1

𝑛


𝑖=1

𝑛

𝑥𝑖 − 𝑞𝑞⊤𝑥𝑖 2

2

• Observation: 𝑞𝑞⊤𝑥𝑖 and 𝑥𝑖 − 𝑞𝑞⊤𝑥𝑖 are orthogonal, and sum to 𝑥𝑖

• Pythagorean theorem => 𝑥𝑖 − 𝑞𝑞⊤𝑥𝑖 2

2
= 𝑥𝑖 2

2 − 𝑞𝑞⊤𝑥𝑖 2

2
= 𝑥𝑖 2

2 − 𝑞⊤𝑥𝑖
2

• PCA optimization problem is thus equivalent to 

argmax
𝑞: 𝑞 =1

1

𝑛


𝑖=1

𝑛

𝑞⊤𝑥𝑖
2

• In matrix form, argmax
𝑞: 𝑞 =1

𝑞⊤
1

𝑛
𝑋⊤𝑋 𝑞

37



PCA as variance maximization

argmax
𝑞: 𝑞 =1

1

𝑛


𝑖=1

𝑛

𝑞⊤𝑥𝑖
2

•
1

𝑛
σ𝑖=1
𝑛 𝑞⊤𝑥𝑖

2 = E𝑆 𝑞⊤𝑥 2

• If data is centered, i.e., E𝑆 𝑥 = 0

⇒ the objective = var𝑆 𝑞
⊤𝑥 = E𝑆 𝑞⊤𝑥 − E𝑆[𝑞

⊤𝑥] 2

• PCA on centered data ⇔ Finding direction 𝑞, such that the projected data 
𝑞⊤𝑥 𝑥∈𝑆 has the maximum variance

38



Eigendecomposition for real symmetric matrices

• Fact: Every Symmetric real matrix 𝐴 is guaranteed to have eigendecomposition with real 
eigenvalues:

• Convention: 𝜆1 ≥ ⋯ ≥ 𝜆𝑑

• For positive semi-definite 𝐴, 𝜆𝑖 ≥ 0 for all 𝑖

• Recall the definition of eigenvectors: 𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖 ∀𝑖 ∈ [𝑑]

• Here, 𝑉 =
| ⋯ |
𝑣1 … 𝑣𝑑
| ⋯ |

has orthonormal columns, i.e. 𝑣𝑖
⊤𝑣𝑗 = 𝐼(𝑖 = 𝑗)

39



Variational characterization of the top eigenvector

• Claim: max
𝑞: 𝑞 =1

𝑞⊤𝐴𝑞 has a maximizer 𝑞∗ = 𝑣1, with maximum objective value 𝜆1

• Proof: recall 𝐴 = σ𝑖=1
𝑛 𝜆𝑖𝑣𝑖𝑣𝑖

⊤

• (Maximum objective upper bound): For any unit vector 𝑞, 

𝑞⊤𝐴𝑞 = σ𝑖=1
𝑑 𝜆𝑖 𝑣𝑖

⊤𝑞
2
≤ 𝜆1, 

since 𝑎𝑖 = 𝑣𝑖
⊤𝑞

2

𝑖=1

𝑑
satisfies σ𝑖=1

𝑑 𝑎𝑖 = 1 and 𝑎𝑖 ≥ 0 for all 𝑖

• (The upper bound is achievable) 𝑞∗ = 𝑣1 satisfies that 𝑞∗⊤𝐴𝑞∗ = 𝜆1

40

𝑞: 𝑞 = 1

𝜆1

𝑞∗



PCA with 𝑘 ≥ 2

argmin
𝑄∈ℝ𝑑×𝑘,𝑄⊤𝑄=𝐼

1

𝑛


𝑖=1

𝑛

𝑥𝑖 −𝑄𝑄⊤𝑥𝑖 2

2

Equivalent to argmax
𝑄∈ℝ𝑑×𝑘,𝑄⊤𝑄=𝐼

1

𝑛
σ𝑖=1
𝑛 𝑄⊤𝑥𝑖 2

2
,  i.e., argmax

𝑄∈ℝ𝑑×𝑘,𝑄⊤𝑄=𝐼

tr 𝑄⊤ 1

𝑛
𝑋⊤𝑋 𝑄 , 

where for 𝐵 ∈ ℝ𝑑×𝑑, tr 𝐵 = σ𝑖=1
𝑑 𝐵𝑖𝑖 is the trace of matrix 𝐵 (Important property: tr 𝐴𝐵 = tr(𝐵𝐴))

• Variance maximization interpretation:

• For centered data, 𝑄⊤ 1

𝑛
𝑋⊤𝑋 𝑄 =

1

𝑛
σ𝑖=1
𝑛 𝑄⊤𝑥𝑖 𝑄⊤𝑥𝑖

⊤ is the covariance matrix of 𝑄⊤𝑥𝑖 ’s

• PCA chooses 𝑄 with the “largest” variance on projected data
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PCA with 𝑘 ≥ 2

argmax
𝑄∈ℝ𝑑×𝑘,𝑄⊤𝑄=𝐼

tr 𝑄⊤𝐴 𝑄

• Fact: optimal 𝑄 has form 𝑄∗ =
| ⋯ |
𝑣1 … 𝑣𝑘
| ⋯ |

, where 𝐴 has eigendecomposition 𝐴 = σ𝑖
𝑑 𝜆𝑖𝑣𝑖𝑣𝑖

⊤

• In summary, 

k-dimensional subspace with smallest reconstruction error 

= k-dimensional subspace with the maximum total variance 

= top-k eigenvectors of 𝐴 =
1

𝑛
𝑋⊤𝑋
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PCA pseudocode (with centering)

• Input: data matrix 𝑋 ∈ ℝ𝑛×𝑑

• Centering: Let 𝜇 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖. Compute 𝑥𝑖

′ = 𝑥𝑖 − 𝜇, ∀𝑖 ∈ [𝑛]

• Compute the top 𝑘 eigenvectors 𝑉 = 𝑣1, … , 𝑣𝑘 of 
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖

′ 𝑥𝑖
′ ⊤

• Feature map: 𝜙 𝑥 = 𝑣1
⊤ 𝑥 − 𝜇 ,… , 𝑣𝑘

⊤ 𝑥 − 𝜇 ∈ ℝ𝑘

• (thm) Decorrelating property (aka “whitening”)

•
1

𝑛
σ𝑖=1
𝑛 𝜙 𝑥𝑖 = 0

•
1

𝑛
σ𝑖=1
𝑛 𝜙 𝑥𝑖 𝜙 𝑥𝑖

⊤ = diag(𝜆1, … , 𝜆𝑘)

• (optional) Reconstruction (the actual projection): apply 𝜇 + 𝑉𝜙 𝑥 ∈ ℝ𝑑

• can be used as a ``denoising’’ procedure.
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(k-dimensional embedding)

𝜆𝑖 is the eigen value (paired with 𝑣𝑖)

https://towardsdatascience.com/pca-clearly-explained-how-when-why-to-use-it-and-feature-importance-a-guide-in-python-7c274582c37e



Example: MNIST dataset

44
https://stats.stackexchange.com/questions/340175/why-is-t-sne-not-used-as-a-dimensionality-reduction-technique-for-clustering-or



Example: data compression

45



Example: eigenfaces

46
Wainwright, “High-dimensional statistics: an non-asymptotic viewpoint”; Yale Face Dataset

The Yale Face Dataset; 𝑛 = 165, 𝑑 = 243 × 320 = 77760 Eigenvalues of 𝐴 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖𝑥𝑖

⊤



Example: eigenfaces (cont’d)

47
Wainwright, “High-dimensional statistics: an non-asymptotic viewpoint”; Yale Face Dataset

The average face, along with the top 24 PCs (eigenfaces) Reconstruction using the average face and the top PCs



PCA caveat

• The direction of maximizing variance is not necessarily useful for classification!

48



Next lecture (10/12)

• Probabilistic machine learning; naïve Bayes algorithm

• Assigned reading: CIML Sections 9.1-9.3
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