CSC 580 Principles of Machine Learning

09 Unsupervised learning

Chicheng Zhang

Department of Computer Science

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun

1

Supervised Learning

Unsupervised Learning

Task 1 : Group These Set of Document into 3 Groups based on meaning

Doc1 : Health , Medicine, Doctor Doc 2 : Machine Learning, Computer Doc 3 : Environment, Planet Doc 4 : Pollution, Climate Crisis Doc 5 : Covid, Health , Doctor

Task 1 : Group These Set of Document into 3 Groups.

Doc1 : Health , Medicine, Doctor Doc 2 : Machine Learning, Computer Doc 3 : Environment, Planet Doc 4 : Pollution, Climate Crisis Doc 5 : Covid, Health , Doctor

Task 1 : Group These Set of Document into 3 Groups.

Doc1 : Health , Medicine, Doctor Doc 5 : Covid, Health , Doctor Doc 3 : Environment, Planet

Doc 4 : Pollution, Climate Crisis

Doc 2 : Machine Learning, Computer

Task 2: Topic modeling

- Provides a summary of a corpus.
- *n* tweets containing the keyword "bullying", "bullied", etc.
- Extracts *k* topics: each topic is a list of words with importance weights.
 - A set of words that co-occurs frequently throughout.

Figure 4: Selected topics discovered by latent Dirichlet allocation.

What is unsupervised learning?

- Uncovering structures in unlabeled data
- What can we expect to learn?
 - **<u>Clustering</u>**: obtain partition of the data that are well-separated.
 - can be viewed as a preliminary classification without predefined class labels.
 - **<u>Components</u>**: extract common components that compose data points.
 - e.g., topic modeling given a set of articles: each article talks about a few topics => extract the set of topics that appears frequently.
- Usage
 - As a summary of the data
 - **Exploratory data analysis**: what are the **patterns** we can get even without labels?
 - Often used as a 'preprocessing techniques'
 - e.g., extract useful <u>features</u> using "gaussian mixture model" (will be covered later)

Clustering

Clustering

• Input: k: the number of clusters (hyperparameter)

 $S = \{x_1, \dots, x_n\}$

- Output
 - partition $\{G_i\}_{i=1}^k$ s.t. $S = \bigcup_i G_i$ (disjoint union).
 - often, we also obtain 'centroids'
- Q: what would be a reasonable definition of centroids?

Application: Clustering for feature extraction

- Feature extraction: histogram features (bag of visual words)
- A set of images: $S = \{x_1, \dots, x_n\}$
- Cut up each $x_i \in \mathbb{R}^d$ into different parts $x_i^{(1)}, \dots, x_i^{(m)} \in \mathbb{R}^p$
 - e.g., small (overlapping) patches of an image
- Notation: $[n] \coloneqq \{1, \dots, n\}$
- Pool all the patches together: $P \coloneqq \left\{x_i^{(j)}\right\}_{i \in [n], j \in [m]}$
- Run clustering on P with #clusters= $k \Rightarrow$ for each $x_i^{(j)}$, we have a cluster assignment $A(x_i^{(j)}) \in [k]$
- Generate the feature vector of x_i as the histogram of $\{A(x_i^{(j)})\}_{i \in [m]}$
 - i.e., $z = (z_1, ..., z_k)$ where z_ℓ is the count of the cluster ℓ

k-means clustering

• Idea: to partition the data, it would be great if someone gives us k reasonable centroids c_1, \ldots, c_k , since then we can partition the data with them.

$$A(x) = \arg\min_{j\in[k]} \left\| x - c_j \right\|_2$$

• But we don't have those centroids => Let's find them with an optimization formulation.

minimize
$$f(c_1, ..., c_k)$$
, where $f(c_1, ..., c_k) = \sum_{i=1}^n \min_{j \in [k]} ||x - c_j||_2^2$

Special case: k=1

• $\min_{c_1,...,c_k} \sum_{i=1}^n \min_{j \in [k]} \|x_i - c_j\|_2^2 \Rightarrow \min_c \sum_{i=1}^n \|x_i - c\|_2^2$

• Let $F(c) = \sum_{i=1}^{n} ||x_i - c||_2^2$ convex; minimizer c^* satisfies that $\nabla F(c^*) = 0$ => $\sum_{i=1}^{n} (x_i - c^*) = 0 \Rightarrow c^* = \frac{1}{n} \sum_{i=1}^{n} x_i$

For $k \geq 2$

- minimize $f(c_1, ..., c_k)$, where $f(c_1, ..., c_k) = \sum_{i=1}^n \min_{j \in [k]} ||x c_j||_2^2 \Rightarrow$ NP-hard even when d = 2
- Lloyd's algorithm: solve it approximately (heuristic)
- Observation: The chicken-and-egg problem.
 - Cluster center location depends on the cluster assignment
 - Cluster assignment depends on cluster location
- Very common heuristic (that may or may not be the best thing to do)

(but people just say it is kmeans clustering algorithm)

Initialization

Arbitrary/random initialization of c_1 and c_2

(A) update the cluster assignments.

(B) Update the centroids $\{c_j\}$

(A) update the cluster assignments.

(A) update the cluster assignments.

(B) Update the centroids $\{c_j\}$

(A) update the cluster assignments.

(B) Update the centroids $\{c_j\}$

Next lecture (10/10)

- Dimensionality reduction; Principal component analysis (PCA)
- Probabilistic machine learning; naïve Bayes algorithm
- Assigned reading: CIML Chap. 15

Lloyd's algorithm for k-means clustering

<u>Input</u>: *k*: num. of clusters, $S = \{x_1, \dots, x_n\}$

[Initialize] Pick $c_1, ..., c_k$ as randomly selected points from S (see next slides for alternatives) For t=1,2,...,max_iter

• [Assignments] $\forall x \in S$, $a_t(x) = \arg \min_{i \in [k]} ||x - c_i||_2^2$

• If
$$t \neq 1$$
 AND $a_t(x) = a_{t-1}(x), \forall x \in S$
• break

• **[Centroids]** $\forall j \in [k], c_j \leftarrow \text{average}(\{x \in S: a_t(x) = j\})$

<u>Output</u>: c_1, \ldots, c_k and $\{a_t(x_i)\}_{i \in [n]}$

Lloyd's algorithm: cost minimization perspective

- Key idea: solving the optimization problem by *reformulation* and *alternating minimization*:
- Reformulation: denote by $\vec{c} \coloneqq (c_1, \dots, c_k), \vec{z} \coloneqq (z_1, \dots, z_n);$ $f(\vec{c}) = \min_{\vec{z}} g(\vec{c}, \vec{z}), \text{ where } g(\vec{c}, \vec{z}) = \sum_{i=1}^n \left\| x_i - c_{z_i} \right\|_2^2$

suffices to solve

$$\min_{\vec{c},\vec{z}} g(\vec{c},\vec{z})$$

- For t = 1, 2, ..., T:
 - Update the cluster assignments: $\vec{z}_t \leftarrow \operatorname{argmin}_{\vec{z}} g(\vec{c}_{t-1}, \vec{z})$
 - Update the centroids: $\vec{c}_t \leftarrow \operatorname{argmin}_{\vec{c}} g(\vec{c}, \vec{z}_t)$
- Observation: objective function $g(\vec{c}_t, \vec{z}_t)$ decreases monotonically in t

Issue 1: Unreliable solution

- You usually get suboptimal solutions
- You usually get different solutions every time you run.
- **Standard practice**: Run it 50 times and take the one that achieves the smallest objective function

• Recall: minimize
$$f(c_1, ..., c_k)$$
, where $f(c_1, ..., c_k) = \sum_{i=1}^n \min_{j \in [k]} ||x - c_j||_2^2$

- Or, change the initialization (next slide)
 - Idea: ensure that we pick a widespread c_1, \ldots, c_k

Two alternative initializations.

- Furthest-first traversal \Rightarrow Sequentially choose c_i that are the farthest from the previously-chosen.
 - Pick $c_1 \in \{x_1, \dots, x_n\}$ arbitrarily (or randomly)
 - For j = 2, ..., k
 - Pick $c_j \in \mathbb{R}^d$ as a point in $\{x_1, \dots, x_n\}$ that maximizes the squared distances to c_1, \dots, c_{j-1} .

$$c_j = \arg \max_{i \in [n]} \min_{j'=1,...,j-1} \left\| x_i - c_{j'} \right\|_2^2$$

- k-means++ (Arthur and Vassilvitskii, 2007)
 - Pick $c_1 \in \{x_1, \dots, x_n\}$ uniformly at random
 - For j = 2, ..., k
 - Define a distribution $\forall i \in [n]$, $\mathbb{P}(c_j = x_i) \propto \min_{j'=1,\dots,j-1} ||x_i c_{j'}||_2^2$
 - Draw c_j from the distribution above.

More likely to choose x_i that is farthest from already-chosen centroids.

=> has a mathematical guarantee that it will be better than an arbitrary starting point!

Issue 2: Choosing k

• $\hat{L}_k = f(c_1, ..., c_k)$ for $c_1, ..., c_k$ obtained by any k-means clustering algorithm

- Elbow method: see where you get saturation.
- Akaike information criterion (AIC): $\operatorname{argmin}_k \left(\hat{L}_k + 2kd \right)$
- Bayesian information criterion (BIC): $\operatorname{argmin}_k \left(\hat{L}_k + kd \cdot \log n \right)$

https://medium.com/analytics-vidhya/how-to-determine-the-optimal-k-for-k-means-708505d204eb

Kernelizing Lloyd's algorithm

How to perform clustering with feature transformations $\phi: \mathcal{X} \to \mathbb{R}^D$?

Input: k: num. of clusters, $S = \{x_1, ..., x_n\}$, kernel function K with feature map ϕ Idea: perform clustering over $\tilde{S} = \{\phi(x_1), ..., \phi(x_n)\}$ without explicitly evaluating ϕ **[Initialize]** Pick $c_1, ..., c_k$ as randomly selected points from \tilde{S} For t=1,2,...,max_iter

• [Assignments] $\forall x \in S$, $a_t(x) = \arg\min_{i \in [k]} \|\phi(x) - c_i\|_2^2$

• If
$$t \neq 1$$
 AND $a_t(x) = a_{t-1}(x), \forall x \in S$

• break

• [Centroids] $\forall j \in [k], c_j \leftarrow \text{average}(\{\phi(x): x \in S, a_t(x) = j\})$ <u>Output</u>: c_1, \dots, c_k and $\{a_t(x_i)\}_{i \in [n]}$

Kernelizing Lloyd's algorithm (cont'd)

- How to calculate $\|\phi(x) c_j\|_2^2$ without explicitly evaluating ϕ ?
- Key observation: c_j always takes the form $c_j = \frac{1}{|S|} \sum_{i \in S} \phi(x_i)$ for some S, and therefore has the form $c_j = \sum_{i=1}^n \alpha_i \phi(x_i)$
- Therefore,

$$\begin{aligned} \left\|\phi(x) - c_j\right\|_2^2 &= \langle \phi(x), \phi(x) \rangle - 2 \langle \phi(x), \sum_{i=1}^n \alpha_i \phi(x_i) \rangle + \left\langle \sum_{i=1}^n \alpha_i \phi(x_i), \sum_{i=1}^n \alpha_i \phi(x_i) \right\rangle \\ &= K(x, x) - 2 \sum_{i=1}^n K(x, x_i) + \sum_i \sum_j \alpha_i \alpha_j K(x_i, x_j) \end{aligned}$$

• Efficiently computable: only requires evaluating K now

Clustering as cost minimization: additional remarks

• k-means objective function is not the only one used in practice

$$f(c_1, \dots, c_k) = \sum_{i=1}^n \min_{j \in [k]} \|x - c_j\|_2^2$$

• Alternative popular cost functions:

k-median:
$$f(c_1, ..., c_k) = \sum_{i=1}^n \min_{j \in [k]} ||x - c_j||_2$$

k-center: $f(c_1, ..., c_k) = \max_i \min_{j \in [k]} ||x - c_j||_2$

• Furthermore, we don't have to restrict to using the ℓ_2 metric

Hierarchical clustering

Hierarchical clustering – getting rid of tuning k

- Idea: produce a tree structure over objects
- Can prune the tree appropriately to fit application needs (e.g. cluster radius / size requirements)

Hierarchical clustering

- Method 1: Top-down (divisive)
 - *k*-means clustering with *k*=2
 - Do this recursively on each resulting cluster (no more recursion when there is only one point in a cluster)
 - You now have a binary tree.
- Method 2: bottom-up (agglomerative, more popular)
 - Start with every point x_i being a singleton cluster
 - Repeatedly pick a pair of clusters with the smallest 'distance'
 - How do we define a distance between two clusters?

Agglomerative clustering: Distance between two clusters

• Single linkage

• dist(C,C') =
$$\min_{x \in C, x' \in C'} ||x - x'||_2$$

• Complete linkage

• dist(C, C') =
$$\max_{x \in C, x' \in C'} ||x - x'||_2$$

• Average linkage

• dist(C,C') =
$$\frac{1}{|C| \cdot |C'|} \sum_{x \in C} \sum_{x' \in C} ||x - x'||_2$$

Dimensionality Reduction and Principal Component Analysis (PCA)

Dimensionality reduction: motivation

- Data compression: Identifies important components that can reconstruct data points
- Identify informative feature transformations
- Visualization & visual analytics: high-dim data -> 2d => easy to plot

33

PCA: Introduction

- Task:
 - Given: raw feature vectors $x_1, \dots, x_n \in \mathbb{R}^d$, target dimension k
 - Output: a k-dimensional <u>subspace</u> represented by an *orthonormal* basis $q_1, ..., q_k \in \mathbb{R}^d$ that the projections of datapoints with it would maximally preserve the ``spread''.
- Application: dimensionality reduction

• Closely related to projections

Principal components: usage

- Compressing the data:
 - Let $Q = \begin{pmatrix} -q_1 \\ \cdots \\ -q_k \end{pmatrix} \in \mathbb{R}^{d \times k}$
 - $x_i \in \mathbb{R}^d$ mapped to 'encoding' $z_i = Qx_i = \begin{pmatrix} q_1^{\mathsf{T}} x_i \\ \dots \\ q_i^{\mathsf{T}} x_i \end{pmatrix} \in \mathbb{R}^k$
- Resconstructing the data ('decoding')
 - Given z_i , reconstruct x_i with $\widetilde{x_i} = \begin{pmatrix} | & \cdots & | \\ q_1 & \cdots & q_k \\ | & \cdots & | \end{pmatrix} z_i = Q^{\top} z_i$
 - Reconstruction error: $x_i \widetilde{x_i} = x_i Q^{\top}Qx_i$
 - If k = d, then perfect reconstruction ($\tilde{x_i} = x_i$)

Projection

- Why reconstructing using $Q^{\top} z_i$?
- Given orthonormal $Q = \begin{pmatrix} -q_1 \\ \cdots \\ -q_k \end{pmatrix}$, $Q^{\top}Qx = \begin{pmatrix} | & \cdots & | \\ q_1 & \cdots & q_k \\ | & \cdots & | \end{pmatrix} \cdot \begin{pmatrix} -q_1 \\ \cdots \\ -q_k \end{pmatrix} x = \sum_i (q_i^{\top}x)q_i$ projection matrix $\Pi = \sum_{i=1}^k q_i q_i^{\top}$

is also the *projection* of x to subspace span $(q_1, ..., q_k)$

• **Projection Objective**: find a k-dimensional **projection matrix** Π s.t. the average residual squared error (reconstruction error) is minimized:

$$\frac{1}{n} \left(\sum_{i=1}^{n} \|x_i - \Pi x_i\|_2^2 \right)$$

Projection when k=1

• Objective:

- Observation: $qq^{T}x_{i}$ and $x_{i} qq^{T}x_{i}$ are orthogonal, and sum to x_{i}
- Pythagorean theorem => $||x_i qq^{\top}x_i||_2^2 = ||x_i||_2^2 ||qq^{\top}x_i||_2^2 = ||x_i||_2^2 (q^{\top}x_i)^2$
- PCA optimization problem is thus equivalent to

$$\underset{q:\|q\|=1}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n} (q^{\mathsf{T}} x_i)^2$$

• In matrix form, $\underset{q:\|q\|=1}{\operatorname{argmax}} q^{\top} \left(\frac{1}{n} X^{\top} X\right) q$

PCA as variance maximization

$$\underset{q:||q||=1}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n} (q^{\mathsf{T}} x_i)^2$$

•
$$\frac{1}{n} \sum_{i=1}^{n} (q^{\mathsf{T}} x_i)^2 = \mathcal{E}_S[(q^{\mathsf{T}} x)^2]$$

- If data is centered, i.e., $E_S[x] = 0$ \Rightarrow the objective = $\operatorname{var}_S[q^T x] = E_S[(q^T x - E_S[q^T x])^2]$
- PCA on centered data \Leftrightarrow Finding direction q, such that the projected data $\{q^{T}x\}_{x\in S}$ has the maximum variance

Eigendecomposition for real symmetric matrices

Fact: Every <u>Symmetric real</u> matrix A is guaranteed to have eigendecomposition with real eigenvalues:

- Convention: $\lambda_1 \ge \cdots \ge \lambda_d$
- For positive semi-definite A, $\lambda_i \ge 0$ for all i
- Recall the definition of eigenvectors: $Av_i = \lambda_i v_i \ \forall i \in [d]$

• Here,
$$V = \begin{pmatrix} | & \cdots & | \\ v_1 & \cdots & v_d \\ | & \cdots & | \end{pmatrix}$$
 has orthonormal columns, i.e. $v_i^{\mathsf{T}} v_j = I(i = j)$

Variational characterization of the top eigenvector

- Claim: $\max_{q:||q||=1} q^T A q$ has a maximizer $q^* = v_1$, with maximum objective value λ_1
- Proof: recall $A = \sum_{i=1}^{n} \lambda_i v_i v_i^{\mathsf{T}}$
 - (Maximum objective upper bound): For any unit vector q,

$$q^{\top}Aq = \sum_{i=1}^{d} \lambda_i (v_i^{\top}q)^2 \leq \lambda_1,$$

since $\left(a_i = \left(v_i^{\top}q\right)^2\right)_{i=1}^{d}$ satisfies $\sum_{i=1}^{d} a_i = 1$ and $a_i \geq 0$ for all $a_i \geq 0$

• (The upper bound is achievable) $q^* = v_1$ satisfies that $q^{*\top}Aq^* = \lambda_1$

PCA with $k \ge 2$

$$\underset{Q \in \mathbb{R}^{d \times k}, Q^{\top}Q = I}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \left\| x_{i} - QQ^{\top}x_{i} \right\|_{2}^{2}$$

Equivalent to
$$\underset{Q \in \mathbb{R}^{d \times k}, Q^{\top}Q = I}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n} \left\| Q^{\top}x_{i} \right\|_{2}^{2}, \text{ i.e., } \underset{Q \in \mathbb{R}^{d \times k}, Q^{\top}Q = I}{\operatorname{argmax}} \operatorname{tr}\left(Q^{\top}\left(\frac{1}{n}X^{\top}X\right)Q\right),$$

1 n

where for $B \in \mathbb{R}^{d \times d}$, $tr(B) = \sum_{i=1}^{d} B_{ii}$ is the *trace* of matrix B (Important property: tr(AB) = tr(BA))

- Variance maximization interpretation:
 - For centered data, $Q^{\top}\left(\frac{1}{n}X^{\top}X\right)Q = \frac{1}{n}\sum_{i=1}^{n}(Q^{\top}x_i)(Q^{\top}x_i)^{\top}$ is the covariance matrix of $\{Q^{\top}x_i\}$'s
 - PCA chooses Q with the "largest" variance on projected data

PCA with $k \ge 2$

• Fact: optimal
$$Q$$
 has form $Q^* = \begin{pmatrix} | & \cdots & | \\ v_1 & \dots & v_k \\ | & \cdots & | \end{pmatrix}$, where A has eigendecomposition $A = \sum_i^d \lambda_i v_i v_i^{\mathsf{T}}$

• In summary,

k-dimensional subspace with smallest reconstruction error

= k-dimensional subspace with the maximum total variance

= top-k eigenvectors of $A = \frac{1}{n}X^{T}X$

PCA pseudocode (with centering)

- Input: data matrix $X \in \mathbb{R}^{n \times d}$
- Centering: Let $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$. Compute $x'_i = x_i \mu$, $\forall i \in [n]$
- Compute the top k eigenvectors $V = [v_1, ..., v_k]$ of $\frac{1}{n} \sum_{i=1}^n x'_i (x'_i)^{\mathsf{T}}$
- Feature map: $\phi(x) = \left(v_1^{\mathsf{T}}(x-\mu), \dots, v_k^{\mathsf{T}}(x-\mu)\right) \in \mathbb{R}^k$
- (thm) Decorrelating property (aka "whitening")
 - $\frac{1}{n} \sum_{i=1}^{n} \phi(x_i) = 0$ • $\frac{1}{n} \sum_{i=1}^{n} \phi(x_i) \phi(x_i)^{\mathsf{T}} = \operatorname{diag}(\lambda_1, \dots, \lambda_k)$

- λ_i is the eigen value (paired with v_i)
- (optional) Reconstruction (the actual projection): apply $\mu + V\phi(x) \in \mathbb{R}^d$
 - can be used as a ``denoising" procedure.

(k-dimensional embedding)

Example: MNIST dataset

https://stats.stackexchange.com/questions/340175/why-is-t-sne-not-used-as-a-dimensionality-reduction-technique-for-clustering-or

Example: data compression

X

16 imes 16 pixel images of handwritten 3s (as vectors in \mathbb{R}^{256})

k = 1

Only have to store k numbers per image, along with the mean μ and k eigenvectors (256(k + 1) numbers)

k = 10 k = 50

k = 200

Example: eigenfaces

The Yale Face Dataset; $n = 165, d = 243 \times 320 = 77760$

Eigenvalues of
$$A = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\mathsf{T}}$$

Example: eigenfaces (cont'd)

The average face, along with the top 24 PCs (eigenfaces)

Reconstruction using the average face and the top PCs

PCA caveat

• The direction of maximizing variance is not necessarily useful for classification!

Next lecture (10/12)

- Probabilistic machine learning; naïve Bayes algorithm
- Assigned reading: CIML Sections 9.1-9.3