CSC 580 Principles of Machine Learning

09 Unsupervised learning

Chicheng Zhang

Department of Computer Science
*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun

Task 1 : Group These Set of Document into 3 Groups based on meaning

Doc1 : Health, Medicine, Doctor
Doc 2 : Machine Learning, Computer
Doc 3 : Environment, Planet
Doc 4 : Pollution, Climate Crisis
Doc 5 : Covid, Health, Doctor

Task 1 : Group These Set of Document into 3 Groups.

Doc1: Health, Medicine, Doctor
Doc 2 : Machine Learning, Computer
Doc 3 : Environment, Planet
Doc 4 : Pollution, Climate Crisis
Doc 5 : Covid, Health, Doctor

Task 1 : Group These Set of Document into 3 Groups.

Doc1 : Health, Medicine, Doctor Doc 5 : Covid, Health, Doctor

Doc 3 : Environment, Planet

Doc 4 : Pollution, Climate Crisis

Doc 2 : Machine Learning, Computer

Task 2: Topic modeling

- Provides a summary of a corpus.
- n tweets containing the keyword "bullying", "bullied", etc.
- Extracts k topics: each topic is a list of words with importance weights.
- A set of words that co-occurs frequently throughout.

"family"

"verbal bullying"
her school

 grade ane started Class | true girls |
| :---: |
| alot | remember

"school"
${ }^{d}$ compeeay

"physical bullying"
Figure 4: Selected topics discovered by latent Dirichlet allocation.

What is unsupervised learning?

- Uncovering structures in unlabeled data
- What can we expect to learn?
- Clustering: obtain partition of the data that are well-separated.
- can be viewed as a preliminary classification without predefined class labels.
- Components: extract common components that compose data points.
- e.g., topic modeling given a set of articles: each article talks about a few topics => extract the set of topics that appears frequently.
- Usage
- As a summary of the data
- Exploratory data analysis: what are the patterns we can get even without labels?
- Often used as a 'preprocessing techniques'
- e.g., extract useful features using "gaussian mixture model" (will be covered later)

Clustering

Clustering

- Input: k : the number of clusters (hyperparameter)

$$
S=\left\{x_{1}, \ldots, x_{n}\right\}
$$

- Output
- partition $\left\{G_{i}\right\}_{i=1}^{k}$ s.t. $\quad S=\cup_{i} G_{i}$ (disjoint union).
- often, we also obtain 'centroids'
- Q: what would be a reasonable definition of centroids?

Application: Clustering for feature extraction

- Feature extraction: histogram features (bag of visual words)
- A set of images: $S=\left\{x_{1}, \ldots, x_{n}\right\}$
- Cut up each $x_{i} \in \mathbb{R}^{d}$ into different parts $x_{i}^{(1)}, \ldots, x_{i}^{(m)} \in \mathbb{R}^{p}$
- e.g., small (overlapping) patches of an image
- Notation: $[n]:=\{1, \ldots, n\}$
- Pool all the patches together: $P:=\left\{x_{i}^{(j)}\right\}_{i \in[n], j \in[m]}$

- Run clustering on P with \#clusters $=k \Rightarrow$ for each $x_{i}^{(j)}$, we have a cluster assignment $A\left(x_{i}^{(j)}\right) \in[k]$
- Generate the feature vector of x_{i} as the histogram of $\left\{A\left(x_{i}^{(j)}\right)\right\}_{j \in[m]}$
- i.e., $z=\left(z_{1}, \ldots, z_{k}\right)$ where z_{ℓ} is the count of the cluster ℓ

k-means clustering

- Idea: to partition the data, it would be great if someone gives us k reasonable centroids c_{1}, \ldots, c_{k}, since then we can partition the data with them.

$$
A(x)=\arg \min _{j \in[k]}\left\|x-c_{j}\right\|_{2}
$$

- But we don't have those centroids => Let's find them with an optimization formulation.

$$
\underset{c_{1}, \ldots, c_{k}}{\operatorname{minimize}} f\left(c_{1}, \ldots, c_{k}\right) \text {, where } f\left(c_{1}, \ldots, c_{k}\right)=\sum_{i=1}^{n} \min _{j \in[k]}\left\|x-c_{j}\right\|_{2}^{2}
$$

Special case: $k=1$

- $\min _{c_{1}, \ldots, c_{k}} \sum_{i=1}^{n} \min _{j \in[k]}\left\|x_{i}-c_{j}\right\|_{2}^{2} \Rightarrow \min _{c} \sum_{i=1}^{n}\left\|x_{i}-c\right\|_{2}^{2}$
- Let $F(c)=\sum_{i=1}^{n}\left\|x_{i}-c\right\|_{2}^{2}$ convex; minimizer c^{*} satisfies that $\nabla F\left(c^{*}\right)=0$
$\Rightarrow \sum_{i=1}^{n}\left(x_{i}-c^{*}\right)=0 \Rightarrow c^{*}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

For $k \geq 2$

- $\operatorname{minimize}_{c_{1}, \ldots, c_{k}} f\left(c_{1}, \ldots, c_{k}\right)$, where $f\left(c_{1}, \ldots, c_{k}\right)=\sum_{i=1}^{n} \min _{j \in[k]}\left\|x-c_{j}\right\|_{2}^{2} \Rightarrow$ NP-hard even when $d=2$
- Lloyd's algorithm: solve it approximately (heuristic)
- Observation: The chicken-and-egg problem.
- Cluster center location depends on the cluster assignment
- Cluster assignment depends on cluster location
- Very common heuristic (that may or may not be the best thing to do)

Initialization

Arbitrary/random initialization of c_{1} and c_{2}

Iteration 1

(A) update the cluster assignments.

(B) Update the centroids $\left\{c_{j}\right\}$

Iteration 2

(A) update the cluster assignments.

(B) Update the centroids $\left\{c_{j}\right\}$

Iteration 3

(A) update the cluster assignments.

(B) Update the centroids $\left\{c_{j}\right\}$

Iteration 4

(A) update the cluster assignments.

(B) Update the centroids $\left\{c_{j}\right\}$

Next lecture (10/10)

- Dimensionality reduction; Principal component analysis (PCA)
- Probabilistic machine learning; naïve Bayes algorithm
- Assigned reading: CIML Chap. 15

Lloyd's algorithm for k-means clustering

Input: k : num. of clusters, $S=\left\{x_{1}, \ldots, x_{n}\right\}$
[Initialize] Pick c_{1}, \ldots, c_{k} as randomly selected points from S (see next slides for alternatives) For $t=1,2, \ldots, m a x _i t e r$

- [Assignments] $\forall x \in S, \quad a_{t}(x)=\arg \min _{j \in[k]}\left\|x-c_{j}\right\|_{2}^{2}$
- If $t \neq 1$ AND $a_{t}(x)=a_{t-1}(x), \forall x \in S$
- break
- [Centroids] $\forall j \in[k], \quad c_{j} \leftarrow \operatorname{average}\left(\left\{x \in S: a_{t}(x)=j\right\}\right)$

Output: c_{1}, \ldots, c_{k} and $\left\{a_{t}\left(x_{i}\right)\right\}_{i \in[n]}$

Lloyd's algorithm: cost minimization perspective

- Key idea: solving the optimization problem by reformulation and alternating minimization:
- Reformulation: denote by $\vec{c}:=\left(c_{1}, \ldots, c_{k}\right), \vec{z}:=\left(z_{1}, \ldots, z_{n}\right)$;

$$
f(\vec{c})=\min _{\vec{z}} g(\vec{c}, \vec{z}), \text { where } g(\vec{c}, \vec{z})=\sum_{i=1}^{n}\left\|x_{i}-c_{z_{i}}\right\|_{2}^{2}
$$

suffices to solve

$$
\min _{\vec{c}, \vec{z}} g(\vec{c}, \vec{z})
$$

- For $t=1,2, \ldots, T$:
- Update the cluster assignments: $\vec{z}_{t} \leftarrow \operatorname{argmin}_{\vec{z}} g\left(\vec{c}_{t-1}, \vec{z}\right)$

- Observation: objective function $g\left(\vec{c}_{t}, \vec{z}_{t}\right)$ decreases monotonically in t

Issue 1: Unreliable solution

- You usually get suboptimal solutions
- You usually get different solutions every time you run.
- Standard practice: Run it 50 times and take the one that achieves the smallest objective function
- Recall: $\underset{c_{1}, \ldots, c_{k}}{\operatorname{minimize}} f\left(c_{1}, \ldots, c_{k}\right)$, where $f\left(c_{1}, \ldots, c_{k}\right)=\sum_{i=1}^{n} \min _{j \in[k]}\left\|x-c_{j}\right\|_{2}^{2}$
- Or, change the initialization (next slide)
- Idea: ensure that we pick a widespread c_{1}, \ldots, c_{k}

Two alternative initializations.

- Furthest-first traversal \Rightarrow Sequentially choose c_{j} that are the farthest from the previously-chosen.
- Pick $c_{1} \in\left\{x_{1}, \ldots, x_{n}\right\}$ arbitrarily (or randomly)
- For $j=2, \ldots, k$
- Pick $c_{j} \in \mathbb{R}^{d}$ as a point in $\left\{x_{1}, \ldots, x_{n}\right\}$ that maximizes the squared distances to c_{1}, \ldots, c_{j-1}.

$$
c_{j}=\arg \max _{i \in[n]} \min _{j^{\prime}=1, \ldots, j-1}\left\|x_{i}-c_{j^{\prime}}\right\|_{2}^{2}
$$

- \boldsymbol{k}-means++ (Arthur and Vassilvitskii, 2007)
- Pick $c_{1} \in\left\{x_{1}, \ldots, x_{n}\right\}$ uniformly at random
- For $j=2, \ldots, k$
- Define a distribution $\forall i \in[n], \mathbb{P}\left(c_{j}=x_{i}\right) \propto \min _{j^{\prime}=1, \ldots, j-1}\left\|x_{i}-c_{j^{\prime}}\right\|_{2}^{2}$
- Draw c_{j} from the distribution above.

More likely to choose x_{i} that is farthest from already-chosen centroids.
=> has a mathematical guarantee that it will be better than an arbitrary starting point!

Issue 2: Choosing k

- $\hat{L}_{k}=f\left(c_{1}, \ldots, c_{k}\right)$ for c_{1}, \ldots, c_{k} obtained by any k-means clustering algorithm

- Elbow method: see where you get saturation.
- Akaike information criterion (AIC): $\operatorname{argmin}_{k}\left(\hat{L}_{k}+2 k d\right)$
- Bayesian information criterion $(\mathrm{BIC}): \operatorname{argmin}_{k}\left(\hat{L}_{k}+k d \cdot \log n\right)$

Kernelizing Lloyd's algorithm

How to perform clustering with feature transformations $\phi: \mathcal{X} \rightarrow \mathbb{R}^{D}$?
Input: k : num. of clusters, $S=\left\{x_{1}, \ldots, x_{n}\right\}$, kernel function K with feature map ϕ Idea: perform clustering over $\tilde{S}=\left\{\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right\}$ without explicitly evaluating ϕ [Initialize] Pick c_{1}, \ldots, c_{k} as randomly selected points from \tilde{S} For $t=1,2, \ldots$, max_iter

- [Assignments] $\forall x \in S, \quad a_{t}(x)=\arg \min _{j \in[k]}\left\|\phi(x)-c_{j}\right\|_{2}^{2}$
- If $\mathrm{t} \neq 1$ AND $a_{t}(x)=a_{t-1}(x), \forall x \in S$
- break

- [Centroids] $\forall j \in[k], \quad c_{j} \leftarrow \operatorname{average}\left(\left\{\phi(x): x \in S, a_{t}(x)=j\right\}\right)$ Output: c_{1}, \ldots, c_{k} and $\left\{a_{t}\left(x_{i}\right)\right\}_{i \in[n]}$

Kernelizing Lloyd's algorithm (cont'd)

- How to calculate $\left\|\phi(x)-c_{j}\right\|_{2}^{2}$ without explicitly evaluating ϕ ?
- Key observation: c_{j} always takes the form $c_{j}=\frac{1}{|S|} \sum_{i \in S} \phi\left(x_{i}\right)$ for some S, and therefore has the form $c_{j}=\sum_{i=1}^{n} \alpha_{i} \phi\left(x_{i}\right)$
- Therefore,

$$
\begin{aligned}
\left\|\phi(x)-c_{j}\right\|_{2}^{2} & =\langle\phi(x), \phi(x)\rangle-2\left\langle\phi(x), \sum_{i=1}^{n} \alpha_{i} \phi\left(x_{i}\right)\right\rangle+\left\langle\sum_{i=1}^{n} \alpha_{i} \phi\left(x_{i}\right), \sum_{i=1}^{n} \alpha_{i} \phi\left(x_{i}\right)\right\rangle \\
& =K(x, x)-2 \sum_{i=1}^{n} K\left(x, x_{i}\right)+\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right)
\end{aligned}
$$

- Efficiently computable: only requires evaluating K now

Clustering as cost minimization: additional remarks

- k-means objective function is not the only one used in practice

$$
f\left(c_{1}, \ldots, c_{k}\right)=\sum_{i=1}^{n} \min _{j \in[k]}\left\|x-c_{j}\right\|_{2}^{2}
$$

- Alternative popular cost functions:

$$
\begin{aligned}
& \text { k-median: } f\left(c_{1}, \ldots, c_{k}\right)=\sum_{i=1}^{n} \min _{j \in[k]}\left\|x-c_{j}\right\|_{2} \\
& \text { k-center: } f\left(c_{1}, \ldots, c_{k}\right)=\max _{i} \min _{j \in[k]}\left\|x-c_{j}\right\|_{2}
\end{aligned}
$$

- Furthermore, we don't have to restrict to using the ℓ_{2} metric

Hierarchical clustering

Hierarchical clustering - getting rid of tuning k

- Idea: produce a tree structure over objects
- Can prune the tree appropriately to fit application needs (e.g. cluster radius / size requirements)

Hierarchical clustering

- Method 1: Top-down (divisive)
- k-means clustering with $k=2$
- Do this recursively on each resulting cluster (no more recursion when there is only one point in a cluster)
- You now have a binary tree.
- Method 2: bottom-up (agglomerative, more popular)
- Start with every point x_{i} being a singleton cluster

- Repeatedly pick a pair of clusters with the smallest 'distance'
- How do we define a distance between two clusters?

Agglomerative clustering: Distance between two clusters

- Single linkage
- $\operatorname{dist}\left(C, C^{\prime}\right)=\min _{x \in C, x^{\prime} \in C^{\prime}}\left\|x-x^{\prime}\right\|_{2}$
- Complete linkage
- $\operatorname{dist}\left(C, C^{\prime}\right)=\max _{x \in C, x^{\prime} \in C^{\prime}}\left\|x-x^{\prime}\right\|_{2}$
- Average linkage
- $\operatorname{dist}\left(C, C^{\prime}\right)=\frac{1}{|C| \cdot\left|C^{\prime}\right|} \sum_{x \in C} \sum_{x^{\prime} \in C}\left\|x-x^{\prime}\right\|_{2}$

Dimensionality Reduction
 and Principal Component Analysis (PCA)

Dimensionality reduction: motivation

- Data compression: Identifies important components that can reconstruct data points
- Identify informative feature transformations
- Visualization \& visual analytics: high-dim data -> 2d => easy to plot

Iris flower dataset (4 features)

PCA: Introduction

- Task:
- Given: raw feature vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, target dimension k
- Output: a k-dimensional subspace represented by an orthonormal basis $q_{1}, \ldots, q_{k} \in \mathbb{R}^{d}$ that the projections of datapoints with it would maximally preserve the "spread".
- Application: dimensionality reduction
- Closely related to projections

if $\mathrm{k}=1$, which basis should we choose?

Principal components: usage

- Compressing the data:
- Let $Q=\left(\begin{array}{c}-q_{1}- \\ \cdots \\ -q_{k}-\end{array}\right) \in \mathbb{R}^{d \times k}$
- $x_{i} \in \mathbb{R}^{d}$ mapped to 'encoding' $z_{i}=Q x_{i}=\left(\begin{array}{c}q_{1}^{\top} x_{i} \\ \cdots \\ q_{k}^{\top} x_{i}\end{array}\right) \in \mathbb{R}^{k}$
- Resconstructing the data ('decoding')
- Given z_{i}, reconstruct x_{i} with $\widetilde{x_{i}}=\left(\begin{array}{ccc}\mid & \cdots & \mid \\ q_{1} & \cdots & q_{k} \\ \mid & \cdots & \mid\end{array}\right) z_{i}=Q^{\top} z_{i}$
- Reconstruction error: $x_{i}-\widetilde{x_{i}}=x_{i}-Q^{\top} Q x_{i}$
- If $k=d$, then perfect reconstruction ($\widetilde{x}_{i}=x_{i}$)

Projection

- Why reconstructing using $Q^{\top} z_{i}$?
- Given orthonormal $Q=\left(\begin{array}{c}-q_{1}- \\ \ldots \\ -q_{k}-\end{array}\right)$,

$$
Q^{\top} Q x=\underbrace{\left(\begin{array}{ccc}
\mid & \cdots & \mid \\
q_{1} & \cdots & q_{k} \\
\mid & \cdots & \mid
\end{array}\right) \cdot\left(\begin{array}{c}
-q_{1}- \\
\cdots \\
-q_{k}-
\end{array}\right)}_{\text {projection matrix } \Pi=\sum_{i=1}^{k} q_{i} q_{i}^{\top}} x=\sum_{i}\left(q_{i}^{\top} x\right) q_{i}
$$

is also the projection of x to subspace $\operatorname{span}\left(q_{1}, \ldots, q_{k}\right)$

- Projection Objective: find a k-dimensional projection matrix Π s.t. the average residual squared error (reconstruction error) is minimized:

$$
\frac{1}{n}\left(\sum_{i=1}^{n}\left\|x_{i}-\Pi x_{i}\right\|_{2}^{2}\right)
$$

Projection when $\mathrm{k}=1$

- Objective:

$$
\underset{q:\|q\|=1}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-q q^{\top} x_{i}\right\|_{2}^{2}
$$

- Observation: $q q^{\top} x_{i}$ and $x_{i}-q q^{\top} x_{i}$ are orthogonal, and sum to x_{i}
- Pythagorean theorem $=>\left\|x_{i}-q q^{\top} x_{i}\right\|_{2}^{2}=\left\|x_{i}\right\|_{2}^{2}-\left\|q q^{\top} x_{i}\right\|_{2}^{2}=\left\|x_{i}\right\|_{2}^{2}-\left(q^{\top} x_{i}\right)^{2}$
- PCA optimization problem is thus equivalent to

$$
\underset{q:\|q\|=1}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n}\left(q^{\top} x_{i}\right)^{2}
$$

- In matrix form, $\underset{q:\|q\|=1}{\operatorname{argmax}} q^{\top}\left(\frac{1}{n} X^{\top} X\right) q$

$$
q:\|q\|=1
$$

PCA as variance maximization

$$
\underset{q:\|q\|=1}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n}\left(q^{\top} x_{i}\right)^{2}
$$

- $\frac{1}{n} \sum_{i=1}^{n}\left(q^{\top} x_{i}\right)^{2}=\mathrm{E}_{S}\left[\left(q^{\top} x\right)^{2}\right]$
- If data is centered, i.e., $\mathrm{E}_{S}[x]=0$
\Rightarrow the objective $=\operatorname{var}_{S}\left[q^{\top} x\right]=\mathrm{E}_{S}\left[\left(q^{\top} x-\mathrm{E}_{S}\left[q^{\top} x\right]\right)^{2}\right]$

- PCA on centered data \Leftrightarrow Finding direction q, such that the projected data $\left\{q^{\top} x\right\}_{x \in S}$ has the maximum variance

Eigendecomposition for real symmetric matrices

- Fact: Every Symmetric real matrix A is guaranteed to have eigendecomposition with real eigenvalues:

- Convention: $\lambda_{1} \geq \cdots \geq \lambda_{d}$
- For positive semi-definite $A, \lambda_{i} \geq 0$ for all i
- Recall the definition of eigenvectors: $A v_{i}=\lambda_{i} v_{i} \forall i \in[d]$
- Here, $V=\left(\begin{array}{ccc}\mid & \cdots & \mid \\ v_{1} & \cdots & v_{d} \\ \mid & \cdots & \mid\end{array}\right)$ has orthonormal columns, i.e. $v_{i}^{\top} v_{j}=I(i=j)$

Variational characterization of the top eigenvector

- Claim: $\max _{q:\|q\|=1} q^{\top} A q$ has a maximizer $q^{*}=v_{1}$, with maximum objective value λ_{1}
- Proof: recall $A=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{\top}$
- (Maximum objective upper bound): For any unit vector q,

$$
q^{\top} A q=\sum_{i=1}^{d} \lambda_{i}\left(v_{i}^{\top} q\right)^{2} \leq \lambda_{1}
$$

since $\left(a_{i}=\left(v_{i}^{\top} q\right)^{2}\right)_{i=1}^{d}$ satisfies $\sum_{i=1}^{d} a_{i}=1$ and $a_{i} \geq 0$ for all i

- (The upper bound is achievable) $q^{*}=v_{1}$ satisfies that $q^{* \top} A q^{*}=\lambda_{1}$

PCA with $k \geq 2$

$$
\underset{Q \in \mathbb{R}^{d \times k}, Q^{\top} Q=I}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-Q Q^{\top} x_{i}\right\|_{2}^{2}
$$

Equivalent to $\underset{Q \in \mathbb{R}^{d \times k}, Q^{\top} Q=I}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n}\left\|Q^{\top} x_{i}\right\|_{2}^{2}$, i.e., $\underset{Q \in \mathbb{R}^{d \times k}, Q^{\top} Q=I}{\operatorname{argmax}} \operatorname{tr}\left(Q^{\top}\left(\frac{1}{n} X^{\top} X\right) Q\right)$,
where for $B \in \mathbb{R}^{d \times d}, \operatorname{tr}(B)=\sum_{i=1}^{d} B_{i i}$ is the trace of matrix B (Important property: $\operatorname{tr}(A B)=\operatorname{tr}(B A)$)

- Variance maximization interpretation:
- For centered data, $Q^{\top}\left(\frac{1}{n} X^{\top} X\right) Q=\frac{1}{n} \sum_{i=1}^{n}\left(Q^{\top} x_{i}\right)\left(Q^{\top} x_{i}\right)^{\top}$ is the covariance matrix of $\left\{Q^{\top} x_{i}\right\}^{\prime}$'s
- PCA chooses Q with the "largest" variance on projected data

PCA with $k \geq 2$

$$
\underset{Q \in \mathbb{R}^{d \times k}, Q^{\top} Q=I}{\operatorname{argmax}} \operatorname{tr}\left(Q^{\top} A Q\right)
$$

- Fact: optimal Q has form $Q^{*}=\left(\begin{array}{ccc}\mid & \cdots & \mid \\ v_{1} & \ldots & v_{k} \\ \mid & \cdots & \mid\end{array}\right)$, where A has eigendecomposition $A=\sum_{i}^{d} \lambda_{i} v_{i} v_{i}^{\top}$
- In summary,
k-dimensional subspace with smallest reconstruction error
= k -dimensional subspace with the maximum total variance
= top-k eigenvectors of $A=\frac{1}{n} X^{\top} X$

PCA pseudocode (with centering)

- Input: data matrix $X \in \mathbb{R}^{n \times d}$
- Centering: Let $\mu=\frac{1}{n} \sum_{i=1}^{n} x_{i}$. Compute $x_{i}^{\prime}=x_{i}-\mu, \forall i \in[n]$
- Compute the top k eigenvectors $V=\left[v_{1}, \ldots, v_{k}\right]$ of $\frac{1}{n} \sum_{i=1}^{n} x_{i}^{\prime}\left(x_{i}^{\prime}\right)^{\top}$

- Feature map: $\phi(x)=\left(v_{1}^{\top}(x-\mu), \ldots, v_{k}^{\top}(x-\mu)\right) \in \mathbb{R}^{k}$
(k-dimensional embedding)
- (thm) Decorrelating property (aka "whitening")
- $\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)=0$
- $\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right) \phi\left(x_{i}\right)^{\top}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right) \quad \lambda_{i}$ is the eigen value (paired with $\left.v_{i}\right)$
- (optional) Reconstruction (the actual projection): apply $\mu+V \phi(x) \in \mathbb{R}^{d}$
- can be used as a "denoising" procedure.

Example: MNIST dataset

PC1 vs PC2 for MNIST Images

Example: data compression

16×16 pixel images of handwritten 3 s (as vectors in \mathbb{R}^{256})
Mean $\boldsymbol{\mu}$ and eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}$

Reconstructions:

x

$k=10$

$k=200$

Only have to store k numbers per image, along with the mean $\boldsymbol{\mu}$ and k eigenvectors ($256(k+1)$ numbers)

Example: eigenfaces

The Yale Face Dataset; $n=165, d=243 \times 320=77760$

Eigenvalues of $A=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}$

Example: eigenfaces (cont’d)

The average face, along with the top 24 PCs (eigenfaces)

Reconstruction using the average face and the top PCs

PCA caveat

- The direction of maximizing variance is not necessarily useful for classification!

Next lecture (10/12)

- Probabilistic machine learning; naïve Bayes algorithm
- Assigned reading: CIML Sections 9.1-9.3

