
CSC 580 Principles of Machine Learning

08 Kernel methods

Chicheng Zhang

Department of Computer Science

1

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun

Recall: Beyond linearity

• Recall: for 1d problem, we embedded the feature: 𝑥′ = 𝑥, 1 ∈ ℝ2

• Actually, the embedding trick is stronger.

• 𝑥2, 𝑥, 1 : 2nd order polynomial

• (𝑥𝑑 , 𝑥𝑑−1, … , 1): d-th order polynomial (= degree d)

• Higher order => strictly larger class of function ℱ

2

Recall: Feature embedding trick

• overfitting vs underfitting

• bias-variance tradeoff.

3from https://datascience.foundation/sciencewhitepaper/underfitting-and-overfitting-in-machine-learning

err(መ𝑓) = [err(መ𝑓) – min
𝑓∗∈ℱ

err(𝑓∗)] + min
𝑓∗∈ℱ

err(𝑓∗)

Kernel trick: high-level idea

• Given (possibly nonlinear) basis functions 𝜙 𝑥 :ℝ𝑑 → ℝ𝐷, where 𝐷 is huge or infinite

• Would like to learn a model from class ℱ𝜙 = {ℎ: ℎ 𝑥 = 𝑤,𝜙(𝑥) , for some 𝑤 ∈ ℝ𝐷} with running

time independent of 𝐷

• Computational Challenge:

a naïve application of existing algorithms (e.g. SGD, Perceptron) has running time Ω 𝐷

• Key structural assumption on 𝜙:

its induced kernel function 𝐾 𝑥, 𝑥′ ≔ 𝜙(𝑥), 𝜙(𝑥′) can be evaluated in time independent of 𝐷

• How can we utilize this structure to address the challenge?

4

Kernel function: an example

• Let 𝑥 < 1

• 𝜙 𝑥 = 1, 𝑥, 𝑥2, 𝑥3… , = 𝑥𝑛 𝑛=1
∞

• Impossible to write down explicitly

• Induced Kernel function:

𝐾 𝑥, 𝑦 ≔ 𝜙 𝑥 , 𝜙 𝑦 =

𝑛=1

∞

𝑥 ⋅ 𝑦 𝑛 =
1

1 − 𝑥𝑦

• Takes 𝑂(1) time to calculate

5

How to use kernels with SVM

• To make predictions

• Recall optimal 𝑤∗ = σ𝑖 𝛼𝑖
∗𝑦𝑖𝜙(𝑥𝑖)

• 𝑤∗, 𝜙 𝑥 = σ𝑖 𝛼𝑖
∗𝑦𝑖 𝜙 𝑥𝑖 , 𝜙 𝑥 = σ𝑖 𝛼𝑖

∗𝑦𝑖𝐾(𝑥𝑖 , 𝑥)

• Take sign 𝑤∗, 𝜙 𝑥 + 𝑏∗

• Interpretation: 𝛼𝑖
∗: weights, 𝑦𝑖: votes, 𝐾 𝑥𝑖 , 𝑥∗ : similarity

6

max
0≤𝛼≤𝐶

𝑖

𝛼𝑖 −
1

2

𝑖

𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 𝜙 𝑥𝑖 , 𝜙 𝑥𝑗

s.t. σ𝑖 𝛼𝑖𝑦𝑖 = 0

min
𝑤,𝑏

𝑤 2 + 𝐶

𝑖=1

𝑛

𝜉𝑖

𝑠. 𝑡. 𝑦𝑖 𝑤
⊤𝜙(𝑥𝑖) + 𝑏 ≥ 1 − 𝜉𝑖 , ∀𝑖

Primal Dual

How to use kernels with SVM (cont’d)

ℎ 𝑥 = sign 𝑤∗, 𝜙 𝑥 + 𝑏∗ = sign σ𝑖 𝛼𝑖
∗𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏∗

• Summary

• training: compute 𝛼𝑖
∗’s and 𝑏∗

• test: compute the kernel functions 𝐾 𝑥𝑖 , 𝑥 and then take weighted combination
σ𝑖 𝛼𝑖

∗𝑦𝑖 𝐾 𝑥𝑖 , 𝑥 + 𝑏∗

7

Cf. weighted k-NN
ො𝑦 𝑥 = argmax

𝑦
σ𝑖∈𝑁 𝑥∗

𝑤𝑖 1{𝑦𝑖 = 𝑦}

= sign(σ𝑖∈𝑁 𝑥∗
𝑤𝑖 𝑦𝑖),

where e.g., 𝑤𝑖 = exp −𝛽𝑑 𝑥𝑖 , 𝑥
2

Polynomial kernels

• 𝐾(𝑥, 𝑥’) = 1 + 𝑥, 𝑥′ 𝑘 => Q: is this a valid kernel?

• E.g., if 𝑥 = (𝑥1, 𝑥2) and 𝑧 = (𝑧1, 𝑧2),

8

where 𝜙 𝑥 = (𝑥1
2, 𝑥2

2, 2 𝑥1, 2𝑥2, 2𝑥1𝑥2, 1)

= ⟨𝜙 𝑥 , 𝜙 𝑧 ⟩

1 + 𝑥1𝑧1 + 𝑥2𝑧2
2 = 1 + 𝑥1

2𝑧1
2 + 𝑥2

2𝑧2
2 + 2𝑥1𝑧1 + 2𝑥2𝑧2 + 2𝑥1𝑥2𝑧2𝑧1

Polynomial kernels

9

Gaussian/RBF kernels

• 𝐾 𝑥, 𝑥′ = exp −
𝑥−𝑥′

2

2𝜎2

• How can we show that this is a valid kernel?

10

recall how we make predictions:

𝑤⊤𝑥∗ = σ𝑖 𝛼𝑖𝑦𝑖𝑥𝑖
⊤𝑥∗ = σ𝑖 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥∗)

weighted k-NN
• argmax

𝑦
σ𝑖∈𝑁 𝑥∗

𝑤𝑖 1{𝑦𝑖 = 𝑦}

• e.g., 𝑤𝑖 = exp −𝛽 ⋅ 𝑑 𝑥𝑖 , 𝑥∗
2

(often parameterized as exp −𝛾 𝑥 − 𝑥′ 2)

=> We should find 𝜙(𝑥) that results in
𝐾 𝑥, 𝑥′ = ⟨𝜙 𝑥 , 𝜙 𝑥′ ⟩

(from https://www.csie.ntu.edu.tw/~cjlin/talks/kuleuven_svm.pdf)

Gaussian kernel

• 𝛾 =
1

2𝜎2

• Larger 𝛾 ⇒ smaller 𝜎2 ⇒ more likely to overfit

• A heuristic in practice: choose 𝜎 = median(𝑥𝑖 − 𝑥𝑗 , 𝑖 ≠ 𝑗)

11

How to recognize a valid kernel

• Two methods

(1) Find an explicit feature representation 𝜙(𝑥)

(2) check Mercer’s condition

• (Def) Let 𝐾 𝑥, 𝑥′ be a kernel. Let 𝑆 = 𝑥1, … , 𝑥𝑛 ⊆ ℝ𝑑

Then, 𝐺 ≔ 𝐾 𝑥𝑖 , 𝑥𝑗 𝑖𝑗
∈ ℝ𝑛×𝑛 is called the Gram matrix of 𝑆

• (Thm) Let 𝐾 𝑥, 𝑥′ be a symmetric function. Then,

𝐾 𝑥, 𝑥′ = 𝜙 𝑥 , 𝜙 𝑥′ for some 𝜙 𝑥 ⟺𝐾 satisfies Mercer’s condition: for any ∀𝑚 ≥
1, ∀𝑥1, … , 𝑥𝑚, the Gram matrix of 𝑆 = {𝑥1, … , 𝑥𝑚} is PSD.

12

cf. covariance matrix

Example

• Is 𝐾 𝑥, 𝑦 = max(𝑥, 𝑦) a valid kernel?

• After some failed trials of constructing 𝜙, you may want to disprove that 𝐾 is a kernel

• Suffices to show that 𝐾 fails Mercer’s condition, i.e. exists some dataset 𝑆 whose Gram matrix is not
PSD

• Guess 𝑆 = {−1} ⇒ 𝐺 = (−1) not PSD

• What if we restrict the inputs 𝑥, 𝑦 ≥ 0?

• Guess 𝑆 = {0, 2} ⇒ 𝐺 =
𝐾(0,0) 𝐾(0,2)
𝐾(2,0) 𝐾(2,2)

=
0 2
2 2

• 𝐺 is not PSD. Why?

• Method 1: find 𝑣 such that 𝑣⊤𝐺𝑣 < 0

• Method 2: check that some eigenvalues of 𝐺 are < 0

13

Building Kernels from simpler ones

• Kernels are closed under

• Positive scaling

• sum/product

• composition with a positive power series: σ𝑖=1
∞ 𝑎𝑖 𝐾 𝑥, 𝑥′

𝑖
, where 𝑎𝑖 ≥ 0 for all 𝑖

14

Building Kernels from simpler ones (cont’d)

15

Kernelized Perceptron algorithm

• How to combine the Perceptron algorithm with a nonlinear feature mapping 𝜙:𝒳 → ℝ𝐷?

• Recall the Perceptron algorithm:

• Suppose 𝜙 is associated with a kernel 𝐾

• Is it possible to implement this without ever explicitly computing 𝜙?

16

Kernelized Perceptron algorithm

• Key observation: throughout the run of the Perceptron algorithm, 𝑤 always lies in
span(𝜙 𝑥1 , … , 𝜙(𝑥𝑛)), i.e.

𝑤 always has the form 𝛼1𝜙 𝑥1 +⋯+ 𝛼𝑛𝜙(𝑥𝑛)

• Key algorithmic idea: instead of maintaining 𝑤 ∈ ℝ𝐷, we maintain its linear combination coefficient
(𝛼1, … , 𝛼𝑛) ∈ ℝ𝑛!

17

𝐾(𝑥𝑚, 𝑥𝑛)

Kernelized ridge regression

• Recall ridge regression:, ෝ𝑤 = argmin
𝑤

𝑋𝑤 − 𝑦 2 + 𝜆 𝑤 2

− 𝑥1 −
…

− 𝑥𝑛 −
⋅ 𝑤 ≈

𝑦1
…
𝑦𝑛

• Woodbury matrix identity (matrix inversion lemma)

• (Thm) ෝ𝑤 can be alternatively written as ෝ𝑤 = 𝑋⊤ 𝜆𝐼𝑛 + 𝑋 𝑋⊤ −1𝑦

(proof)

• starting point: recall ෝ𝑤 = 𝜆𝐼 + 𝑋⊤𝑋 −1𝑋⊤𝑦 => apply the lemma above to 𝜆𝐼 + 𝑋⊤𝑋 −1

• tip: when you get stuck, try the special case of 𝑑 = 1 to get a sense.

18

𝑋: 𝑛 × 𝑑 𝑦: 𝑛 × 1

Gram matrix

(scaled) covariance matrix

Kernelized ridge regression

− 𝜙(𝑥1) −
…

− 𝜙(𝑥𝑛) −
⋅ 𝑤 ≈

𝑦1
…
𝑦𝑛

• ෝ𝑤 = Φ⊤ 𝜆𝐼 + ΦΦ⊤ −1𝑦

• Recall ΦΦ⊤ = 𝐾 𝑥𝑖 , 𝑥𝑗
𝑖,𝑗

is the Gram matrix

• Prediction for 𝒙:

• Again, avoids explicit representation of 𝜙(𝑥𝑖)’s

19

Φ: 𝑛 × 𝑑 𝑦: 𝑛 × 1

ෝ𝑤,𝜙(𝑥) = 𝜙 𝑥 ⊤ෝ𝑤
= 𝜙 𝑥 ⊤Φ⊤ 𝜆𝐼 + ΦΦ⊤ −1𝑦
= 𝐾 𝑥, 𝑥1 , … , 𝐾(𝑥, 𝑥𝑛) ⋅ 𝛼, where 𝛼 = 𝜆𝐼 + ΦΦ⊤ −1𝑦

Time complexity of (kernelized) Perceptron & ridge regression

• 𝜙: feature map from 𝑑 dimensions to 𝑝 dimensions

• 𝑛: training set size

• 𝑘: the number of operations to evaluate 𝐾(𝑥, 𝑥′)

• Test stage:

• Training stage:

20

Without kernel trick With Kernel trick

Ridge regression

Perceptron

Without kernel trick With Kernel Trick

Ridge regression

Perceptron

𝑂(𝑝)

𝑂(𝑝)

𝑂(𝑛𝑘)

𝑂(𝑛𝑘)

𝑂(𝑛𝑝2 + 𝑝3) 𝑂(𝑛2𝑘 + 𝑛3)

𝑂(#iters × 𝑝) 𝑂(#iters × 𝑛𝑘)

Next lecture (10/3)

• Unsupervised learning

• Assigned reading: CIML 3.4 (Review) 11.3

21

