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Classification with linear models
& WolframAlpha

* Logistic loss

* X (S ]Rd, Vi (S {1, —1} plot log(1+exp(-z))
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First, is it convex?

* How do we check the convexity of F?
e Is 2(w; x;,v;) = log(1 + exp(—y; - w'x;)) convex in w?
e Observation: £(w; x;,y;) = h(y; - w'x;) where h(z) = log(1 + exp(—z))
* |t suffices to check that h(z) is convex

e \

* Indeed, h"'(z) = ho772 2 0

e Alternative route: check the PSD-ness of sz(w; Xi, Vi)

* Great! Let’s solve VF(w) =0



Finding the minimizer of F: gradient descent

e Algorithm
Input: initial point wo € R?
step sizes e}z

stopping tolerence € > 0
Fort =1, ..., max_iter
* W < Weq — N - VF(We_q)
F(w¢)—F(we_q)
F(wg_1)

<€

e stop if

10 0 10

Hyperparameters
° wp:setittoO

 warmstart possible if you have a good guess
* stepsize

e constant scheme: n, =n,Vt

* Ne =
Mt =7
e Line search possible

e €:107* to 1077... more of engineering.
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http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf 4



More iterative methods

Algorithms Number if iterations until
convergence
Newton’s method Very small
LBFGS small
Gradient descent (GD) large
Stochastic gradient descent Very large
(SGD)

n: #training examples
d: dimensionality
m: LBFGS’s memory hyperparameter

Will come back to SGD in later part of this lecture

Time complexity per
iteration
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Probabilistic interpretation of logistic regression

How did they come up with the logistic loss?

Let us begin using 1/0 encoding for the label (then later turn into 1/-1 encoding)

* y; | x; ~ Bernoulli(p;), where p; = g(x;)

Modeling attempt 1: g(x;) = w'x;

Modeling attempt 2: g(x;) = o(w"x;), where o(z) = is the sigmoid function

1+e~ %4

* i.e. logitlog (1?;_) =w'x; /_




Probabilistic interpretation of logistic regression

Logistic regression as maximum likelihood estimation y; | x; ~ Bernoulli(a(w "x;))
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Caveat: Logistic regression may not have a minimizer

without a regularizer )

* E.g,
* training set has only one data point ‘

* more generally, linearly separable data.

e Structure of minimizers, optimization properties discussed in

Convex Analysis at Infinity: An Introduction to Astral Space T-

Miroslav Dudik, Ziwei Ji, Robert E. Schapire, Matus Telgarsky + -

* Adding regularization addresses this issue:
W = argmin, pa Yieq £W; x3, ;) + Alwl|5
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Next class (9/26)

Dual of SVM; induced practical optimization algorithms

Kernel methods

Plan to release HW?2

Assigned reading: CIML 11.1-11.2



Support Vector Machines

* |n a nutshell

* Perform regularized ERM W = argmin pad i  tw; x, yp) + Allwll3

with the loss
fw;x,y) =1 —y-wix),
* notation: (z), = max{0, z}
* Interesting aspects
* Works well in general
* No corresponding probabilistic motivation
* Geometric Interpretation: maximize the margin.

hinge loss

e 1| {300
— -y )

*;

s |01, (1222 (- )]

a0, 1- i)

y*f69

https://rohanvarma.me/Loss-Functions/
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Remaining parts of the lecture

* Q1: How is the loss function motivated and how is it maximizing the margin?

* Q2: How to solve the SVM optimization problem efficiently?
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SVM: motivation

The goal of linear classifier: Find w so that the rule h,,(x) = sign(w "x) will have small
generalization error err(h,,).

ERM: it seems natural to use the loss 1{h,,(x) # y}, but...
* NP-hard (e.g. Guruswami and Raghavendra, 2009)
* There might be multiple minima. How to break ties?

Okay, we’re stuck. Let us consider a simple problem and then try to extend it to the generic
problem.

The simple case: linearly separable data (recall perceptron)

https://www.cs.cornell.edu/courses/c56781/20205p/lectures/lO_hardnessZ.pdf12



Linearly separable data

e Recall: we can minimize 0-1 loss here with a reasonable time complexity!
* e.g., run perceptron until it classifies train set perfectly

* But, among these minimizers, which one should we pick?

* |dea: pick the hyperplane such that its

distances to all training examples are far

Class -1

Same on empirical loss;
Different on test/expected loss

13



Facts on vectors

wTx

to the hyperplane w'x = 0

* (Lem 1) a vector x has distance Wi

How about with bias?w™x+b =0

Let us be explicit on the bias: f(x;w,b) = w'x + b

recall: w is orthogonal to the hyperplanew 'x + b =0
* why? (left as exercise)

14



Facts on vectors

|WTx+b|

TR the hyperplanew™x + b =0

* (Lem 2) x has distance

claiml : x can be writtenas x = x, + rm where x, is the

projection of x onto the hyperplane.

claim2 : then, |r| is the distance between x and the hyperplane

. T T WTW £
Solvingforr: w ' x+b=w'x, +71 Wl + b =7r||lw|.
T
.. . w'x+b
this implies |r| = | |
Iw]l

Figure from Pattern Recognition and Machine Learning, Bishop 15



SVM derivation (1)

. e . . ] T +b 2
 Margin of (w, b) over all training points: y'(w, b) = mm% AR
l ; ,

* Choose (w, b) with the maximum margin? .. wait, we also want it to be a perfect classifier

* redefine it

* Choose w with the maximum margin (and perfect classification)

-
~ (w'x; +b
(w,b) = maxmin}-, yiw_xi +b)
w,b Iwl

* One more issue: still, infinitely many solutions..!

16



SVM derivation (2)

Infinitely many solutions..

x;i+b
(w,b) = max mln’{‘ 1yl(W  + )

[wl

It’s actually a matter of removing ‘duplicates’; 3 many (w,b)’s that actually represent the same
hyperplane.

Quick solution = achieves the smallest margin

* For any solution (vT/ E), let x;+ be the closest to the hyperplane Wx; + b = 0

* Imagine rescaling (W, 13) so that |WTxl-* + 13| =1

We can always do that, but can we find a formulation that automatically finds that modified
solution?

e add the constraint min y;(w'x; + b) = 1
l

17



SVM derivation (3)
. yilw'x; +b)

max min;_
wh Tl

s.t. miny;(w'x; + b) =1
1

 Summary: the constraint encodes (1) correct classification (2) there are no two solutions that
represent the same hyperplane!

~ T . U |
* Note: If (W, b) is a solution, then the margin is —

|w|
1 1 1
max —— max —— max ——
wb ||w]| wb ||w]| wb ||w]|
s.t. miny;(w'x; + b) =1 s.t. miny;(w'x; + b) > 1 s.t. yiiw'x; +b) > 1,Vi
1 l

(turns out to be equivalent..)

: 2
Final formulation in the linearly separable setting: fv’&}g’”W”

(quadratic programming) s.t. y;(w'x; +b) =>1,Vi

18



SVM in the nonseparable setting: Soft-margin

m1n||w| 2

s.t. yl(w Xl+b)>1Vl

What if data is linearly nonseparable?

Introduce ’slack’ variables

2 Cisah t
gr{lglo}llwll +CZEl // C is a hyper-parameter

s.t. yiiwTx; +b) > l—El,Vl

Again, a quadratic programming problem

Fix any w, b, the optimal &?
& =0ify;(w'x; +b)=>1,andé; =1 —y;(w'x; + b)
n

min |[w]|* +C Z(l —y;(w'x; + b)) <> Regularized hinge loss minimization 1 = —
w,b + ¢

=1 19



Solving SVM optimization problems

* Two popular methods
 Method 1: stochastic gradient descent

 Method 2: solve the dual problem and transform the dual solution back

20



= 1{y"fe)=0)
—plyig
— I0g2(1 +expl-yix)) |

Stochastic gradient descent (SGD)

= g (0, 1- 5 ()

Finding W = argmin, ,.paF (W), F(w) = % L filw), i
where f;(w) is convex + quadratic, e.g. 1
(1 = yilw, x4 + Awll3,
log(1 + exp(—y; - w'x;)) + A|lwl|3 D I I

yHf(x)

Observation: gradient descent is computationally expensive Batch Gradient Descent
* calculating exact gradient VF (w) takes at least Q(n) time

Key idea (Robbins-Monro’51): descend in directions that are in-expectation VF (w)
Fort = 1,2,...,T:
* Choose it ~ Uniform({l, e n}) Stochastic Gradient Descent

* Wiy < W — Utvfit(W)

Output: (1) wy: = %Zle w; (average iterate); (2) wr (last iterate)

21




SGD: handling nondifferentiable objectives

. ke &
* Hinge loss: g

f(w) = h(w) +3 lwll3, where h(w) = (1 — y{w, x)),

For some w, Vh(w) does not exist (say, d=1)

Workaround: descent in the subgradient direction

[Def] For convex function h, g € R? is said to be a subgradient of h at w, if for any u,
h(u) = h(w) + (g, u — w)

The set of subgradients of h at w is denoted as dh(w)
For differentiable h, dh(w) = {Vh(w)}

22



we FE

Subgradient: intuition and properties

* Example: h(w) = (1 —w),,
{—1}, w<l

oh(w) =<[—-1,0], w=1 e
{0}, w>1 )}u?‘“}

* (Lem) If h(w) = L({a,w) + b) for some convex [ on R, and suppose z € dl({a,w) + b). Then, az € dh(w)
e Generalizes chain rule of differentiation

* Practical implication: For f(w) = (1 — y{w, x)) ., the following vector(s) are in df (w) (and are thus valid
descent directions):
—yX, y{w,x) <1
—uyx foru € [0,1], y{w,x) =1
0, y{w, x) > 1

23



SGD: convergence guarantee

* (Thm) Suppose F(w) = =1, fi(w), where fl(w) = h;(w) + A||w||3, and covl

—— Pegasos

h;(w) is L-Lipschitz, then SGD with step size n; = — satlsfles that ---- SDCA

SVM—Perf

1.0

t

- @ LASVM

0.8

AT

E[F (7)) — min F(w) < 0 (Lz log T),

0.7

_ 1 @T
whereWT—; t=1 Wt

0.6

* [Def] h is said to be L-Lipschitz, if for any u, v, |h(u) — h(v)| < L||lu — v||,

e 0 (;) rate; if target optimization precision €, then O (T) <ee=T>0 (E)

* Larger A, “Smoother” h; = easier to optimize

Shalev-Shwartz, Singer, Srebro, Cotter, “Pegasos: Primal Estimated sub-GrAdient SOlver for SYM”, 2011



Solving SVM optimization problems

* Two popular methods
 Method 1: stochastic gradient descent

 Method 2: solve the dual problem and transform the dual solution back

25



Constrained optimization and Lagrange multiplier

Lagrange multiplier: a powerful tool for solving constrained optimization problems.
min f(w)
w
s.t. gw)<0oVvi=1,..,k
hJ(W) = O,Vj = 1, ,f

Lagrangian: L(w, a, B) = f(w) + X; a;9;(w) + X; f;h;(w), where a;, ;s are Lagrange multipliers

Define (W) = aﬁygagg o Lw,a,pB)

f(w), if w satisfies all the constraints
+ 00, otherwise

(Thm) 0p(w) = {

This implies that solving the following unconstrained problem is equivalent to solving the original
constrained problem!

minfd,(w) =min max L(w,«a
w P( ) w a,f:a;20Vi ( ’ "8)

26



The dual problem

 Why dual?
* Alternative way of efficient optimization Recall: p* := min 8. (w) = min max Lw. a
. . “ . ” . p w P( ) w “1'---:“k20,,31,...,,8g ( ) 1:k» ﬁl:f)
e Gives rise to “kernel trick

Dual problem: d* = max min L(W, 1.k, B1.¢)
ai,%20,01,...00 W

[Def] “Strong duality holds”: p* = d”

To satisfy strong duality, we need conditions:
e (1) fand g’s are convex. h’s are affine.
* (2) Slater’s condition: 3 feasible point xy: g;(xy) < 0,i =1, ...,k

For more properties, see e.g. Lieven Vandenberghe’s lecture on convex optimization duality

27


https://www.seas.ucla.edu/~vandenbe/ee236b/lectures/duality.pdf

Dual problem for homogeneous SVM

n

1
T 2 1
g vl Lw,) = lwl2 =) aywTx = 1)
s.t. yywlx; > 1,Vi i=1

Claim: the dual problem is max z a; — —Z Z aia;y;yiX; x]

* Proof idea: the dual problem is max min L(w, a); fix any «, the optimal w is such that
a w

n
- Z a;yix; =0 =w= z a;yiX;
i

=1

28



Dual problem for nohomogeneous SVM

n

1
— 2 1
ming vl £((w,b),0) =5 IWl? = ) ai(iwTx; +b) = 1)
=1

s.t. yi(wTx; +b) = 1,Vi

e Claim: the dual problem is max zal ——ZZCX a;jYiyjX; x]

st. Y a;y; =0

oL .
S =W Z a;yixi=0 =>w= Z a;YiXi

ow ,
i=1

0L
%=—Zai3’i =0

[

Using the same reasoning as previous slide, you should be able to prove the claim!

29



The optimality condition

* From now on, suppose the strong duality holds.
* Then, w*, (a*, ) are optimal solutions to the primal and dual problems &
w’, (a”, B7) satisfy the following Karush-Kuhn-Tucker (KKT) condition
Feasibility Stationarity Complementary slackness
a; >0,i=1,..,k %(W*'“*'ﬁ*)zo a;giw*)=0,i=1,..,k

gw)<0,i=1,..,k
h](W*) = 0,] = 1, ,'g

* Implication: this links the primal optimal w* to the dual optimal (¢, %)
* Enables recovery of near optimal w from near-optimal (a, )

30



Optimality condition: stationarity

y
w*, the solution of t constaint function c
g(x, y) =0 X Of?l‘o

mMi,n f(w)
s.t. hw)=0

satisfies that VL(w*, f*) = 0 for some 7, i.e
Vf(w") = =" Vh(w")

Key idea: if Vf(w™) is not colinear with Vh(w™) = can locally decrease f while staying in h(w) = 0

Ex: f(w) = wi + w2, h(w) =w; +w, — 1

Optimal solution w* satisfies: (2wy, 2w,) = —*(1,1) = w; = w,

31



Optimality condition: complementary slackness

* w*, the solution of
min f(w)
w
s.t. gw)<0

satisfies that, there exists some dual variable ™ > 0, s.t.
(1) VL(w*, a*) = 0 for some, i.e. Vf(W") = —a*Vg(w")
2)a*-gw*) =0

e Casel: g(w") <0=2a"=0=>Vf(w*) =0
* Case2: g(w*) = 0 = Vf(w") needs to be colinear with Vg(w™)

32



The dual problem

1
1 R OV VX X
min = [|w]]’ max ) i =5 ), ), @yl
i

w,b 2 i
S. . yi(WT.X'l' + b) > 1,Vi s.t. Zi a;y; = 0

Quadratic programming * How to get back the primal solution?

Affine constraints S o
* Use optimality condition:

n variables vs d+1 variables n

0L

Why bother with n variables? % wha')=w" — z a{‘yixi =0
i=1

* *
= w" =), a;ViX;



Hard-margin SVM: interpretation of dual variables

 Stationarity = w* = ). a; y;x; 1 T
Yy i Xi YiXi rgzag( | a; — E | | al-ajyl-iji XJ
[ A
. . . * S't' Zl alyl — 0
* Support vectors: those data points i with a; > 0.
* Complementary slackness = «; (1 — yi(W*Txi + b*)) =0 ;=0

e.a; >0= yi(W*Txi + b*) =1

* Implications:
 Can use this to recover b* from a*

* SVM “compresses” training set

https://www.cs.cmu.edu/“aarti/CIass/10315_FaII20/Iecs/svm_duaI_kernel.pd£4



The dual problem for soft-margin SVM

mm = ||W||2 + Cz ¢
bé1n 2

S.t. yl(W xl+b)>1—§l,VL
& =0,Vi

Lagrangian: L(w, b, ¢, a,y) = -||W||2 +CX & — 2 (iwix; +b) =1+ &) — XL, vié
Dual problem: maximize D(a,y): = mér% Lw,b, & a,y)
w,b,

oL

.E_():)W leal YiXi
oL

+ =0 a4y, =0
oL

a—&_:C—(ai‘l')/i):O
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The dual problem for soft-margin SVM (cont’d)

Plugging the optimality conditions into D(a,y) := mg%ll(w, b,&, a,y), with some algebra, we have:
w,b,

( 1
Z“i_zzzaianinx;—xj» Zaiyi =0,a; +y; =C(,Vi
D(a,y) =« l. — & .
\

l

—00, otherwise

Dual bl D
ual problem: £I(1)E;1/)§0 (a,y)

Representing y in terms of «, the dual problem is equivalent to:

max a — = a;a;yyix; x;
g 2o =30, 2wl

s.t. Zialyl =0

Remark: for homogeneous version, same dual problem without equality constraint (exercise)
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Soft-margin SVM: Support vectors

* Support vectors: those data points i with a; > 0.

e Stationary condition:

oL
ow

=O$W*=

n E'S
i=1 & " YiXi

1.0

0.5

0.0

-0.5

-1.

1
-
max a; —— a:iyV;ViX; Xi
0<a<C z L ZZZ i4YiYjXi X
i

l

st. 2, a;y; =0

C=100

1.0 -1.0 -0.5 0.0 0.5 1.0

Figure from Ben-Hur & Weston,
Methods in Molecular Biology 2010
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Soft-margin SVM: additional remarks

 Complementary slackness =

Forall i, y;¢; = 0and af(yi(W*Txi +b*)—1+¢&)=0

* Therefore, a >0 = yi(w*Txl- + b*) =1-¢& <1 Decision
boundary P! ®

c 2} €(0,0)=>y;€(0,0)=>¢ =02y (wx+b) =1

e Use this to recover b*

https://ankitnitjsr13.medium.com/math-behind-svm-support-vector-machine-864e58977fdk:



Dual SVM: optimization

1.0

—— Pegasos
--- SDCA
11 —8— SVM-Perf

0.9

0.8

Solving
g @ =D a =3 ) Y wayyly

In practice: use stochastic dual coordinate ascent (SDCA):
Fort =1,2,..

0.7

0.6

* Choose i ~ Uniform({1, ...,n}) S
* a; < argmaxy.e[o,c]P(ay, ..., @;, ..., @) — a univariate constrained quadratic maximization

For the nonhomogeneous version:

1
N
max a, —— a;x;VivViX; Xi
0<a<C Z ' ZZZ (&YX X
i i

s.t. ;a7 =0
Popular algorithm: Sequential minimal optimization (SMO) (Platt, 1998)
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SVM: summary

Hinge loss & geometric motivation

Optimization: finding the ERM

Lagrange multiplier
* | will include a few homework problems on this

Dual formulation
* why bother? kernel methods!

40



Next class (9/28)

e Kernel methods

e Assigned reading: CIML 11.4, 11.5 (Review of SVM dual formulation)
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