CSC 580 Principles of Machine Learning

07 Linear models for classification

Chicheng Zhang

Department of Computer Science

Classification with linear models

- Logistic loss
- $x_{i} \in \mathbb{R}^{d}, y_{i} \in\{1,-1\}$
- $S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$
- $\ell\left(w ; x_{i}, y_{i}\right)=\log \left(1+\exp \left(-y_{i} \cdot w^{\top} x_{i}\right)\right)$
- The ERM principle, again!

$$
\widehat{w}=\operatorname{argmin}_{w \in \mathbb{R}^{d}} F(w), F(w):=\sum_{i=1}^{n} \ell\left(w ; x_{i}, y_{i}\right)
$$

- How to optimize?

$$
\text { plot } \log (1+\exp (-z))
$$

First, is it convex?

- How do we check the convexity of F ?
- Is $\ell\left(w ; x_{i}, y_{i}\right)=\log \left(1+\exp \left(-y_{i} \cdot w^{\top} x_{i}\right)\right)$ convex in w ?
- Observation: $\ell\left(w ; x_{i}, y_{i}\right)=h\left(y_{i} \cdot w^{\top} x_{i}\right)$ where $h(z)=\log (1+\exp (-z))$
- It suffices to check that $h(z)$ is convex
- Indeed, $h^{\prime \prime}(z)=\frac{e^{-z}}{\left(1+e^{-z}\right)^{2}} \geq 0$
- Alternative route: check the PSD-ness of $\nabla^{2} \ell\left(w ; x_{i}, y_{i}\right)$
- Great! Let's solve $\nabla F(w)=0$

Finding the minimizer of F : gradient descent

- Algorithm

Input: initial point

$$
w_{0} \in \mathbb{R}^{d}
$$

step sizes
$\left\{\eta_{t}\right\}_{t=1}^{\infty}$
stopping tolerence $\epsilon>0$
For $t=1, \ldots$, max_iter

- $w_{t} \leftarrow w_{t-1}-\eta_{t} \cdot \nabla F\left(w_{t-1}\right)$
- stop if $\left|\frac{F\left(w_{t}\right)-F\left(w_{t-1}\right)}{F\left(w_{t-1}\right)}\right| \leq \epsilon$

Hyperparameters

- w_{0} : set it to 0
- warmstart possible if you have a good guess
- stepsize
- constant scheme: $\eta_{t}=\eta, \forall t$
- $\eta_{t}=\frac{1}{\sqrt{t}}$
- $\eta_{t}=\frac{1}{t}$
- Line search possible
- $\epsilon: 10^{-4}$ to $10^{-7} \ldots$ more of engineering.

More iterative methods

Algorithms	Number if iterations until convergence	Time complexity per iteration
Newton's method	Very small	$n d^{3}$
LBFGS	small	$n m d$
Gradient descent (GD)	large	$n d$
Stochastic gradient descent (SGD)	Very large	d

- n : \#training examples
- d : dimensionality
- m: LBFGS's memory hyperparameter
- Will come back to SGD in later part of this lecture

Probabilistic interpretation of logistic regression

- How did they come up with the logistic loss?
- Let us begin using $1 / 0$ encoding for the label (then later turn into 1/-1 encoding)
- $y_{i} \mid x_{i} \sim \operatorname{Bernoulli}\left(p_{i}\right)$, where $p_{i}=g\left(x_{i}\right)$
- Modeling attempt 1: $g\left(x_{i}\right)=w^{\top} x_{i}$
- Modeling attempt 2: $g\left(x_{i}\right)=\sigma\left(w^{\top} x_{i}\right)$, where $\sigma(z)=\frac{1}{1+e^{-z}}$ is the sigmoid function
- i.e. $\operatorname{logit} \log \left(\frac{p_{i}}{1-p_{i}}\right)=w^{\top} x_{i}$

Probabilistic interpretation of logistic regression

Logistic regression as maximum likelihood estimation
$y_{i} \mid x_{i} \sim \operatorname{Bernoulli}\left(\sigma\left(w^{\top} x_{i}\right)\right)$

$$
\begin{aligned}
& \rightarrow \text { now, just like in regression, maximize the "likelihood" } \\
& \widehat{\omega}=\arg \max \pi_{i=1}^{n} P\left(Y_{i}=y_{i} ; X_{i}=x_{i}\right) \\
& \left.\begin{array}{rl}
w & =\arg \max _{w} \prod_{n=1}^{i=} P\left(r_{i}=y_{i}\left(x_{i}=x_{i}\right) P\left(x_{i}=x_{i}\right)\right. \\
& =\| \quad \pi_{i=1}^{n} \mathbb{P}\left(Y_{i}=y_{i} ; P_{i}=v\left(w^{\top} x_{i}\right)\right) \\
& =\arg \max _{w} \\
\sum_{i=1}^{n} \log P(
\end{array}\right) \Rightarrow \\
& =\arg \min _{w} \sum_{i=1}^{n}-\log P(\quad, \quad) \\
& \text { "Pub of obsexuing } Y_{i}=Y_{i} \\
& \text { if }\left\{\begin{array}{l}
y_{i}=1,-\log P_{i} \\
y_{i}=0,-\log \left(1-p_{i}\right) .
\end{array}\right. \\
& \left.\begin{array}{rl}
= & \left\{\begin{array}{l}
\left(y_{i}=1\right) \\
\\
\\
\left(y_{i}=0\right)
\end{array}>(-1) \cdot 1 \cdot\left(-\log \left(1+e^{\omega / x_{c}}\right)\right.\right. \\
& \text { Let } \tilde{y}=1 \cdot\left(-\log \left(1+e^{\omega^{\top} x_{i}}\right)\right)
\end{array}\right\} \quad \text { if } y_{i}=1 . \\
& \text { Let } \begin{array}{ll}
\tilde{y}_{i}=1 & \text { if } y_{i}=1 . \\
\left\langle\tilde{y}_{i}=-1\right. & \text { if } y_{i}=0 .
\end{array} \\
& \Rightarrow=\log \left(1+e^{-\tilde{y}_{i} \omega^{\top} x_{i}}\right) . \\
& p_{i}^{y_{i}} \cdot\left(1-p_{i}\right)^{1-y_{i}} \\
& \text { if } y_{i}=1 ; p_{i} . p_{i} y_{i}=0: 1-p_{i} \\
& \text { (-) } \log P_{i} \\
& =\log \sigma\left(\omega^{\top} x_{i}\right) \\
& =\log \left(\frac{1}{1+e^{-\omega T}}\right) \\
& =-\log \left(1+e^{-\omega^{7} x_{i}}\right) . \\
& \text { (c) } \log \left(1-p_{i}\right) \\
& =\log \left(1-\frac{1}{1+e^{-w^{2}} x_{i}}\right) \\
& =\log \left(\frac{e^{-w^{\top} x_{i}}}{1+e^{-w^{7} x_{i}}}\right) \\
& =\log \left(\frac{1}{1+e^{\omega}} x_{i}\right) \\
& =-\log \left(1+e^{\omega^{\top} x_{i}}\right)
\end{aligned}
$$

Caveat: Logistic regression may not have a minimizer

 without a regularizer- E.g.,
- training set has only one data point

- more generally, linearly separable data.
- Structure of minimizers, optimization properties discussed in

Convex Analysis at Infinity: An Introduction to Astral Space
Miroslav Dudík, Ziwei Ji, Robert E. Schapire, Matus Telgarsky

- Adding regularization addresses this issue:

$$
\widehat{w}=\operatorname{argmin}_{w \in \mathbb{R}^{d}} \sum_{i=1}^{n} \ell\left(w ; x_{i}, y_{i}\right)+\lambda\|w\|_{2}^{2}
$$

Next class (9/26)

- Dual of SVM; induced practical optimization algorithms
- Kernel methods
- Plan to release HW2
- Assigned reading: CIML 11.1-11.2

Support Vector Machines

- In a nutshell
- Perform regularized ERM $\widehat{w}=\operatorname{argmin}_{w \in \mathbb{R}^{d}} \sum_{i=1}^{n} \ell\left(w ; x_{i}, y_{i}\right)+\lambda\|w\|_{2}^{2}$ with the loss

$$
\ell(w ; x, y)=\left(1-y \cdot w^{\top} x\right)_{+} \quad \text { hinge loss }
$$

- notation: $(z)_{+}:=\max \{0, z\}$
- Interesting aspects
- Works well in general
- No corresponding probabilistic motivation
- Geometric Interpretation: maximize the margin.

Remaining parts of the lecture

- Q1: How is the loss function motivated and how is it maximizing the margin?
- Q2: How to solve the SVM optimization problem efficiently?

SVM: motivation

- The goal of linear classifier: Find w so that the rule $h_{w}(x)=\operatorname{sign}\left(w^{\top} x\right)$ will have small generalization error $\operatorname{err}\left(h_{w}\right)$.
- ERM: it seems natural to use the loss $1\left\{h_{w}(x) \neq y\right\}$, but...
- NP-hard (e.g. Guruswami and Raghavendra, 2009)
- There might be multiple minima. How to break ties?
- Okay, we're stuck. Let us consider a simple problem and then try to extend it to the generic problem.
- The simple case: linearly separable data (recall perceptron)

Linearly separable data

- Recall: we can minimize 0-1 loss here with a reasonable time complexity!
- e.g., run perceptron until it classifies train set perfectly
- But, among these minimizers, which one should we pick?
- Idea: pick the hyperplane such that its distances to all training examples are far

Facts on vectors

- (Lem 1) a vector x has distance $\frac{w^{\top} x}{\|w\|}$ to the hyperplane $w^{\top} x=0$
- How about with bias? $w^{\top} x+b=0$
- Let us be explicit on the bias: $f(x ; w, b)=w^{\top} x+b$
- recall: w is orthogonal to the hyperplane $w^{\top} x+b=0$
- why? (left as exercise)

Facts on vectors

- (Lem 2) x has distance $\frac{\left|w^{\top} x+b\right|}{\|w\|}$ to the hyperplane $w^{\top} x+b=0$
claim1 : x can be written as $x=x_{\perp}+r \frac{w}{\|w\|}$ where x_{\perp} is the projection of x onto the hyperplane.
claim2 : then, $|r|$ is the distance between x and the hyperplane

Solving for $r: w^{\top} x+b=w^{\top} x_{\perp}+r \frac{w^{\top} w}{\|w\|}+b=r\|w\|$.
this implies $|r|=\frac{\left|w^{\top} x+b\right|}{\|w\|}$

$$
\begin{array}{rr}
\quad y>0 \\
y=0 \\
y<0 & x_{2} \\
\mathcal{R}_{1}
\end{array} \quad y(x):=w^{\top} x+b
$$

SVM derivation (1)

- Margin of (w, b) over all training points: $\gamma^{\prime}(w, b)=\min _{i} \frac{\left|w^{\top} x_{i}+b\right|}{\|w\|}$

- Choose (w, b) with the maximum margin? .. wait, we also want it to be a perfect classifier
- redefine it

$$
\gamma(w, b)=\min _{i} \frac{y_{i}\left(w^{\top} x_{i}+b\right)}{\|w\|}
$$

- Choose w with the maximum margin (and perfect classification)

$$
(\widehat{w}, \widehat{b})=\max _{w, b} \min _{i=1}^{n} \frac{y_{i}\left(w^{\top} x_{i}+b\right)}{\|w\|}
$$

- One more issue: still, infinitely many solutions..!

SVM derivation (2)

$$
(\widehat{w}, \widehat{b})=\max _{w, b} \min _{i=1}^{n} \frac{y_{i}\left(w^{\top} x_{i}+b\right)}{\|w\|}
$$

- Infinitely many solutions..
- It's actually a matter of removing 'duplicates'; \exists many (w, b)'s that actually represent the same hyperplane.
- Quick solution = achieves the smallest margin
- For any solution $(\widehat{w}, \widehat{b})$, let $x_{i^{*}}$ be the closest to the hyperplane $\widehat{w} x_{i}+\widehat{b}=0$
- Imagine rescaling (\widehat{w}, \hat{b}) so that $\left|\widehat{w}^{\top} x_{i^{*}}+\hat{b}\right|=1$
- We can always do that, but can we find a formulation that automatically finds that modified solution?
- add the constraint $\min _{i} y_{i}\left(w^{\top} x_{i}+b\right)=1$

SVM derivation (3)

$$
\begin{aligned}
& \max _{w, b} \min _{i=1}^{n} \frac{y_{i}\left(w^{\top} x_{i}+b\right)}{\|w\|} \\
& \text { s.t. } \min _{i} y_{i}\left(w^{\top} x_{i}+b\right)=1
\end{aligned}
$$

- Summary: the constraint encodes (1) correct classification (2) there are no two solutions that represent the same hyperplane!
- Note: If (\widehat{w}, \hat{b}) is a solution, then the margin is $\frac{1}{\|\widehat{w}\|}$
$\max _{w, b} \frac{1}{\|w\|}$
$\max _{w, b} \frac{1}{\|w\|}$
s.t. $\min _{\mathrm{i}} y_{i}\left(w^{\top} x_{i}+b\right)=1$
s.t. $\min _{i} y_{i}\left(w^{\top} x_{i}+b\right) \geq 1$
$\max _{w, b} \frac{1}{\|w\|}$

$$
\max _{w, b} \frac{}{\|w\|}
$$

$$
\text { s.t. } y_{i}\left(w^{\top} x_{i}+\ddot{b}\right) \geq 1, \forall i
$$

Final formulation in the linearly separable setting: (quadratic programming)

$$
\begin{array}{cc}
& \min \|w\|^{2} \\
\text { s.t. } & y_{i}\left(w^{\top} x_{i}+b\right) \geq 1, \forall i
\end{array}
$$

SVM in the nonseparable setting: Soft-margin

$$
\begin{array}{cc}
& \min _{w, b}\|w\|^{2} \\
\text { s.t. } & y_{i}\left(w^{\top} x_{i}+b\right) \geq 1, \forall i
\end{array}
$$

- What if data is linearly nonseparable?
- Introduce 'slack' variables

$$
\begin{array}{ll}
& \min _{w, b,\left\{\xi_{i} \geq 0\right\}}\|w\|^{2}+C \sum_{i=1}^{n} \xi_{i} \quad / / C \text { is a hyper-parameter } \\
\text { s.t. } & y_{i}\left(w^{\top} x_{i}+b\right) \geq 1-\xi_{i}, \forall i
\end{array}
$$

- Again, a quadratic programming problem
- Fix any w, b, the optimal ξ ?

$$
\begin{aligned}
& \xi_{i}=0 \text { if } y_{i}\left(w^{\top} x_{i}+b\right) \geq 1, \text { and } \xi_{i}=1-y_{i}\left(w^{\top} x_{i}+b\right) \\
& \qquad \min _{w, b}\|w\|^{2}+C \sum_{i=1}^{n}\left(1-y_{i}\left(w^{\top} x_{i}+b\right)\right)_{+} \Leftrightarrow \text { Regularized hinge loss minimization } \lambda=\frac{1}{C}
\end{aligned}
$$

Solving SVM optimization problems

- Two popular methods
- Method 1: stochastic gradient descent
- Method 2: solve the dual problem and transform the dual solution back

Stochastic gradient descent (SGD)

- Finding $\widehat{w}=\operatorname{argmin}_{w \in \mathbb{R}^{d}} F(w), F(w)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$, where $f_{i}(w)$ is convex + quadratic, e.g.

$$
\begin{aligned}
& \left(1-y_{i}\left\langle w, x_{i}\right\rangle\right)_{+}+\lambda\|w\|_{2}^{2} \\
& \log \left(1+\exp \left(-y_{i} \cdot w^{\top} x_{i}\right)\right)+\lambda\|w\|_{2}^{2}
\end{aligned}
$$

- Observation: gradient descent is computationally expensive

Batch Gradient Descent

- calculating exact gradient $\nabla F(w)$ takes at least $\Omega(n)$ time
- Key idea (Robbins-Monro'51): descend in directions that are in-expectation $\nabla F(w)$
- For $t=1,2, \ldots, T$:
- Choose $i_{t} \sim \operatorname{Uniform}(\{1, \ldots, n\})$

- $w_{t+1} \leftarrow w_{t}-\eta_{t} \nabla f_{i_{t}}(w)$
- Output: (1) $\bar{w}_{T}:=\frac{1}{T} \sum_{t=1}^{T} w_{t}$ (average iterate); (2) w_{T} (last iterate)

Stochastic Gradient Descent

SGD: handling nondifferentiable objectives

- Hinge loss:

$$
f(w)=h(w)+\frac{\lambda}{2}\|w\|_{2}^{2}, \text { where } h(w)=(1-y\langle w, x\rangle)_{+}
$$

- For some $w, \nabla h(w)$ does not exist (say, $\mathrm{d}=1$)
- Workaround: descent in the subgradient direction

- [Def] For convex function $h, g \in \mathbb{R}^{d}$ is said to be a subgradient of h at w, if for any u,

$$
h(u) \geq h(w)+\langle g, u-w\rangle
$$

The set of subgradients of h at w is denoted as $\partial h(w)$

- For differentiable $h, \partial h(w)=\{\nabla h(w)\}$

Subgradient: intuition and properties

- Example: $h(w)=(1-w)_{+}$,

$$
\partial h(w)=\left\{\begin{array}{cc}
\{-1\}, & w<1 \\
{[-1,0],} & w=1 \\
\{0\}, & w>1
\end{array}\right.
$$

- (Lem) If $h(w)=l(\langle a, w\rangle+b)$ for some convex l on \mathbb{R}, and suppose $z \in \partial l(\langle a, w\rangle+b)$. Then, $a z \in \partial h(w)$
- Generalizes chain rule of differentiation
- Practical implication: For $f(w)=(1-y\langle w, x\rangle)_{+}$, the following vector(s) are in $\partial f(w)$ (and are thus valid descent directions):

$$
\begin{cases}-y x, & y\langle w, x\rangle<1 \\ -u y x \text { for } u \in[0,1], & y\langle w, x\rangle=1 \\ 0, & y\langle w, x\rangle>1\end{cases}
$$

SGD: convergence guarantee

- (Thm) Suppose $F(w)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$, where $f_{i}(w)=h_{i}(w)+\lambda\|w\|_{2}^{2}$, and $h_{i}(w)$ is L-Lipschitz, then SGD with step size $\eta_{t}=\frac{1}{\lambda t}$ satisfies that

$$
\mathbb{E}\left[F\left(\bar{w}_{T}\right)\right]-\min _{w} F(w) \leq O\left(\frac{L^{2} \log T}{\lambda T}\right)
$$

where $\bar{w}_{T}=\frac{1}{T} \sum_{t=1}^{T} w_{t}$

- [Def] h is said to be L-Lipschitz, if for any $u, v,|h(u)-h(v)| \leq L\|u-v\|_{2}$
- $\tilde{O}\left(\frac{1}{T}\right)$ rate; if target optimization precision ϵ, then $O\left(\frac{1}{T}\right) \leq \epsilon \Longleftarrow T \geq O\left(\frac{1}{\epsilon}\right)$
- Larger λ, "Smoother" $h_{i} \Rightarrow$ easier to optimize

Solving SVM optimization problems

- Two popular methods
- Method 1: stochastic gradient descent
- Method 2: solve the dual problem and transform the dual solution back

Constrained optimization and Lagrange multiplier

- Lagrange multiplier: a powerful tool for solving constrained optimization problems.

$$
\begin{array}{cc}
& \min _{w} f(w) \\
\text { s.t. } & g_{i}(w) \leq 0, \forall i=1, \ldots, k \\
& h_{j}(w)=0, \forall j=1, \ldots, \ell
\end{array}
$$

- Lagrangian: $\mathcal{L}(w, \alpha, \beta):=f(w)+\sum_{i} \alpha_{i} g_{i}(w)+\sum_{j} \beta_{j} h_{j}(w)$, where α_{i}, β_{j} 's are Lagrange multipliers
- Define $\theta_{P}(w):=\max _{\alpha, \beta: \alpha_{i} \geq 0, \forall i} \mathcal{L}(w, \alpha, \beta)$
- (Thm) $\theta_{P}(w)=\left\{\begin{array}{lr}f(w), & \text { if } w \text { satisfies all the constraints } \\ +\infty, & \text { otherwise }\end{array}\right.$
- This implies that solving the following unconstrained problem is equivalent to solving the original constrained problem!

$$
\min _{w} \theta_{P}(w)=\min _{w} \max _{\alpha, \beta: \alpha_{i} \geq 0, \forall i} \mathcal{L}(w, \alpha, \beta)
$$

The dual problem

- Why dual?
- Alternative way of efficient optimization
- Gives rise to "kernel trick"

$$
\text { Recall: } p^{*}:=\min _{w} \theta_{P}(w)=\min _{w} \max _{\alpha_{1}, \ldots, \alpha_{k} \geq 0, \beta_{1}, \ldots, \beta_{\ell}} \mathcal{L}\left(w, \alpha_{1: k}, \beta_{1: \ell}\right)
$$

- Dual problem: $d^{*}:=\max _{\alpha_{1}, \ldots, \alpha_{k} \geq 0, \beta_{1}, \ldots, \beta_{\ell}} \min _{w} \mathcal{L}\left(w, \alpha_{1: k}, \beta_{1: \ell}\right)$
- [Def] "Strong duality holds": $p^{*}=d^{*}$
- To satisfy strong duality, we need conditions:
- (1) f and g's are convex. h's are affine.
- (2) Slater's condition: \exists feasible point $x_{0}: g_{i}\left(x_{0}\right)<0, i=1, \ldots, k$
- For more properties, see e.g. Lieven Vandenberghe's lecture on convex optimization duality

Dual problem for homogeneous SVM

$\min _{w} \frac{1}{2}\|w\|^{2}$
s.t. $y_{i} w^{\top} x_{i} \geq 1, \forall i$

$$
\mathcal{L}(w, \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i} w^{\top} x_{i}-1\right)
$$

- Claim: the dual problem is

$$
\max _{\alpha \geq 0} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}
$$

- Proof idea: the dual problem is $\max _{\alpha \geq 0} \min _{w} \mathcal{L}(w, \alpha)$; fix any α, the optimal w is such that

$$
\frac{\partial \mathcal{L}}{\partial w}=w-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}=0 \Rightarrow w=\sum_{i} \alpha_{i} y_{i} x_{i}
$$

Dual problem for nohomogeneous SVM

$$
\begin{array}{cc}
\min _{w, b} \frac{1}{2}\|w\|^{2} & \mathcal{L}((w, b), \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(w^{\top} x_{i}+b\right)-1\right) \\
\text { s.t. } y_{i}\left(w^{\top} x_{i}+b\right) \geq 1, \forall i &
\end{array}
$$

- Claim: the dual problem is $\max _{\alpha \geq 0} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}$
s.t. $\sum_{i} \alpha_{i} y_{i}=0$
$\frac{\partial \mathcal{L}}{\partial w}=w-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}=0 \Rightarrow w=\sum_{i} \alpha_{i} y_{i} x_{i}$
$\frac{\partial \mathcal{L}}{\partial b}=-\sum_{i} \alpha_{i} y_{i}=0$
Using the same reasoning as previous slide, you should be able to prove the claim!

The optimality condition

- From now on, suppose the strong duality holds.
- Then, $w^{*},\left(\alpha^{*}, \beta^{*}\right)$ are optimal solutions to the primal and dual problems \Leftrightarrow $w^{*},\left(\alpha^{*}, \beta^{*}\right)$ satisfy the following Karush-Kuhn-Tucker (KKT) condition

$$
\begin{gathered}
\text { Feasibility } \\
\alpha_{i}^{*} \geq 0, i=1, \ldots, k \\
g_{i}\left(w^{*}\right) \leq 0, i=1, \ldots, k \\
h_{j}\left(w^{*}\right)=0, j=1, \ldots, \ell
\end{gathered}
$$

Stationarity

$$
\frac{\partial \mathcal{L}}{\partial w}\left(w^{*}, \alpha^{*}, \beta^{*}\right)=0
$$

Complementary slackness
$\alpha_{i}^{*} g_{i}\left(w^{*}\right)=0, i=1, \ldots, k$

- Implication: this links the primal optimal w^{*} to the dual optimal $\left(\alpha^{*}, \beta^{*}\right)$
- Enables recovery of near optimal w from near-optimal (α, β)

Optimality condition: stationarity

w^{*}, the solution of

$$
\begin{gathered}
\min _{w} f(w) \\
\text { s.t. } \quad h(w)=0
\end{gathered}
$$

satisfies that $\nabla \mathcal{L}\left(w^{*}, \beta^{*}\right)=0$ for some β^{*}, i.e.

$$
\nabla f\left(w^{*}\right)=-\beta^{*} \nabla h\left(w^{*}\right)
$$

Key idea: if $\nabla f\left(w^{*}\right)$ is not colinear with $\nabla h\left(w^{*}\right) \Rightarrow$ can locally decrease f while staying in $h(w)=0$

Ex: $f(w)=w_{1}^{2}+w_{2}^{2}, h(w)=w_{1}+w_{2}-1$
Optimal solution w^{*} satisfies: $\left(2 w_{1}^{*}, 2 w_{2}^{*}\right)=-\beta^{*}(1,1) \Rightarrow w_{1}^{*}=w_{2}^{*}$

Optimality condition: complementary slackness

- w^{*}, the solution of

$$
\begin{aligned}
& \quad \min _{w} f(w) \\
& \text { s.t. } \quad g(w) \leq 0
\end{aligned}
$$

satisfies that, there exists some dual variable $\alpha^{*} \geq 0$, s.t.
(1) $\nabla \mathcal{L}\left(w^{*}, \alpha^{*}\right)=0$ for some, i.e. $\nabla f\left(w^{*}\right)=-\alpha^{*} \nabla g\left(w^{*}\right)$
(2) $\alpha^{*} \cdot g\left(w^{*}\right)=0$

- Case 1: $g\left(w^{*}\right)<0 \Rightarrow \alpha^{*}=0 \Rightarrow \nabla f\left(w^{*}\right)=0$
- Case 2: $g\left(w^{*}\right)=0 \Rightarrow \nabla f\left(w^{*}\right)$ needs to be colinear with $\nabla g\left(w^{*}\right)$

The dual problem

$$
\begin{array}{cc}
\min _{w, b} \frac{1}{2}\|w\|^{2} \\
\text { s.t. } & y_{i}\left(w^{\top} x_{i}+b\right) \geq 1, \forall i
\end{array}
$$

- Quadratic programming
- Affine constraints
- n variables vs $\mathrm{d}+1$ variables
- Why bother with n variables?

$$
\begin{aligned}
& \max _{\alpha \geq 0} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j} \\
& \text { s.t. } \sum_{i} \alpha_{i} y_{i}=0
\end{aligned}
$$

- How to get back the primal solution?
- Use optimality condition:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial w}\left(w^{*}, \alpha^{*}\right)=w^{*}-\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} x_{i}=0 \\
& \Rightarrow w^{*}=\sum_{i} \alpha_{i}^{*} y_{i} x_{i}
\end{aligned}
$$

Hard-margin SVM: interpretation of dual variables

- Stationarity $\Rightarrow w^{*}=\sum_{i} \alpha_{i}^{*} y_{i} x_{i}$

$$
\begin{aligned}
& \max _{\alpha \geq 0} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j} \\
& \text { s.t. } \sum_{i} \alpha_{i} y_{i}=0
\end{aligned}
$$

- Support vectors: those data points i with $\alpha_{i}^{*}>0$.
- Complementary slackness $\Rightarrow \alpha_{i}^{*}\left(1-y_{i}\left(w^{* \top} x_{i}+b^{*}\right)\right)=0$ i.e. $\alpha_{i}^{*}>0 \Rightarrow y_{i}\left(w^{* \top} x_{i}+b^{*}\right)=1$
- Implications:
- Can use this to recover b^{*} from α^{*}
- SVM "compresses" training set

The dual problem for soft-margin SVM

$$
\begin{array}{ll}
& \min _{w, b, \xi_{1: n}} \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } & y_{i}\left(w^{\top} x_{i}+b\right) \geq 1-\xi_{i}, \forall i \\
& \xi_{i} \geq 0, \forall i
\end{array}
$$

- Lagrangian: $\mathcal{L}(w, b, \xi, \alpha, \gamma)=\frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(w^{\top} x_{i}+b\right)-1+\xi_{i}\right)-\sum_{i=1}^{n} \gamma_{i} \xi_{i}$
- Dual problem: maximize $D(\alpha, \gamma):=\min _{w, b, \xi} \mathcal{L}(w, b, \xi, \alpha, \gamma)$
- $\frac{\partial \mathcal{L}}{\partial w}=0 \Rightarrow w=\sum_{i=1}^{n} \alpha_{i} \cdot y_{i} x_{i}$
- $\frac{\partial \mathcal{L}}{\partial b}=0 \Rightarrow \sum_{i=1}^{n} \alpha_{i} y_{i}=0$
- $\frac{\partial \mathcal{L}}{\partial \xi_{i}}=C-\left(\alpha_{i}+\gamma_{i}\right)=0$

The dual problem for soft-margin SVM (cont'd)

- Plugging the optimality conditions into $D(\alpha, \gamma):=\min _{w, b, \xi} \mathcal{L}(w, b, \xi, \alpha, \gamma)$, with some algebra, we have:

$$
D(\alpha, \gamma)=\left\{\begin{array}{c}
\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}, \quad \sum_{i} \alpha_{i} y_{i}=0, \alpha_{i}+\gamma_{i}=C, \forall i \\
\text { otherwise }
\end{array}\right.
$$

- Dual problem: $\max _{\alpha \geq 0, \gamma \geq 0} D(\alpha, \gamma)$
- Representing γ in terms of α, the dual problem is equivalent to:

$$
\begin{aligned}
& \max _{0 \leq \alpha \leq C} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j} \\
& \text { s.t. } \sum_{i} \alpha_{i} y_{i}=0
\end{aligned}
$$

- Remark: for homogeneous version, same dual problem without equality constraint (exercise)

Soft-margin SVM: Support vectors

- Support vectors: those data points i with $\alpha_{i}^{*}>0$. $\max _{0 \leq \alpha \leq C} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}$
s.t. $\sum_{i} \alpha_{i} y_{i}=0$
- Stationary condition:
- $\frac{\partial \mathcal{L}}{\partial w}=0 \Rightarrow w^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} \cdot y_{i} x_{i}$

Soft-margin SVM: additional remarks

- Complementary slackness \Rightarrow

For all $i, \gamma_{i}^{*} \xi_{i}^{*}=0$ and $\alpha_{i}^{*}\left(y_{i}\left(w^{* \top} x_{i}+b^{*}\right)-1+\xi_{i}^{*}\right)=0$

- Therefore, $\alpha_{i}^{*}>0 \Rightarrow y_{i}\left(w^{* \top} x_{i}+b^{*}\right)=1-\xi_{i}^{*} \leq 1$

- $\alpha_{i}^{*} \in(0, C) \Rightarrow \gamma_{i}^{*} \in(0, C) \Rightarrow \xi_{i}^{*}=0 \Rightarrow y_{i}\left(w^{* \top} x_{i}+b^{*}\right)=1$
- Use this to recover b^{*}

Dual SVM: optimization

- Solving

$$
\max _{0 \leq \alpha \leq C} D(\alpha):=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}
$$

- In practice: use stochastic dual coordinate ascent (SDCA):
- For $t=1,2,$. .
- Choose $i \sim \operatorname{Uniform}(\{1, \ldots, n\})$

- $\alpha_{i} \leftarrow \operatorname{argmax}_{\alpha_{i} \in[0, C]} D\left(\alpha_{1}, \ldots, \alpha_{i}, \ldots, \alpha_{n}\right)$ - a univariate constrained quadratic maximization
- For the nonhomogeneous version:

$$
\max _{0 \leq \alpha \leq C} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}
$$

$$
\text { s.t. } \sum_{i} \alpha_{i} y_{i}=0
$$

- Popular algorithm: Sequential minimal optimization (SMO) (Platt, 1998)

SVM: summary

- Hinge loss \& geometric motivation
- Optimization: finding the ERM
- Lagrange multiplier
- I will include a few homework problems on this
- Dual formulation
- why bother? kernel methods!

Next class (9/28)

- Kernel methods
- Assigned reading: CIML 11.4, 11.5 (Review of SVM dual formulation)

