CSC 580 Principles of Machine Learning

07 Linear models for classification

Chicheng Zhang

Department of Computer Science

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun

1

Classification with linear models

- Logistic loss
 - $x_i \in \mathbb{R}^d$, $y_i \in \{1, -1\}$
 - $S = \{(x_i, y_i)\}_{i=1}^n$
 - $\ell(w; x_i, y_i) = \log(1 + \exp(-y_i \cdot w^{\mathsf{T}} x_i))$
- The ERM principle, again! $\widehat{w} = \operatorname{argmin}_{w \in \mathbb{R}^d} F(w), \ F(w) \coloneqq \sum_{i=1}^n \ell(w; x_i, y_i)$
- How to optimize?

First, is it convex?

- How do we check the convexity of *F*?
 - Is $\ell(w; x_i, y_i) = \log(1 + \exp(-y_i \cdot w^\top x_i))$ convex in w?
 - Observation: $\ell(w; x_i, y_i) = h(y_i \cdot w^{\top} x_i)$ where $h(z) = \log(1 + \exp(-z))$
 - It suffices to check that h(z) is convex

• Indeed,
$$h''(z) = \frac{e^{-z}}{(1+e^{-z})^2} \ge 0$$

- Alternative route: check the PSD-ness of $\nabla^2 \ell(w; x_i, y_i)$
- Great! Let's solve $\nabla F(w) = 0$

Finding the minimizer of F: gradient descent

 Algorithm $w_0 \in \mathbb{R}^d$ Input: initial point $\{\eta_t\}_{t=1}^{\infty}$ step sizes stopping tolerence $\epsilon > 0$ For t = 1, ..., max iter

•
$$w_t \leftarrow w_{t-1} - \eta_t \cdot \nabla F(w_{t-1})$$

• stop if $\left| \frac{F(w_t) - F(w_{t-1})}{F(w_{t-1})} \right| \le \epsilon$

Hyperparameters

- w_0 : set it to 0
 - warmstart possible if you have a good guess
- stepsize
 - constant scheme: $\eta_t = \eta, \forall t$ •

•
$$\eta_t = \frac{1}{\sqrt{t}}$$

• $\eta_t = \frac{1}{t}$

Line search possible •

t

• $\epsilon: 10^{-4}$ to 10^{-7} ... more of engineering.

http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf 4

More iterative methods

Algorithms	Number if iterations until convergence	Time complexity per iteration
Newton's method	Very small	nd^3
LBFGS	small	nmd
Gradient descent (GD)	large	nd
Stochastic gradient descent (SGD)	Very large	d

- *n*: #training examples
- *d*: dimensionality
- *m*: LBFGS's memory hyperparameter
- Will come back to SGD in later part of this lecture

Probabilistic interpretation of logistic regression

- How did they come up with the logistic loss?
- Let us begin using 1/0 encoding for the label (then later turn into 1/-1 encoding)
- $y_i \mid x_i \sim \text{Bernoulli}(p_i)$, where $p_i = g(x_i)$
- Modeling attempt 1: $g(x_i) = w^{\top} x_i$
- Modeling attempt 2: $g(x_i) = \sigma(w^T x_i)$, where $\sigma(z) = \frac{1}{1+e^{-z}}$ is the sigmoid function

• i.e. logit
$$\log\left(\frac{p_i}{1-p_i}\right) = w^{\mathsf{T}}x_i$$

Probabilistic interpretation of logistic regression

Logistic regression as maximum likelihood estimation $y_i | x_i \sim \text{Bernoulli}(\sigma(w^T x_i))$

Caveat: Logistic regression may not have a minimizer without a regularizer

- E.g.,
 - training set has only one data point

- more generally, linearly separable data.
- Structure of minimizers, optimization properties discussed in

Convex Analysis at Infinity: An Introduction to Astral Space

Miroslav Dudík, Ziwei Ji, Robert E. Schapire, Matus Telgarsky

• Adding regularization addresses this issue:

 $\widehat{w} = \operatorname{argmin}_{w \in \mathbb{R}^d} \sum_{i=1}^n \ell(w; x_i, y_i) + \lambda \|w\|_2^2$

Next class (9/26)

- Dual of SVM; induced practical optimization algorithms
- Kernel methods
- Plan to release HW2
- Assigned reading: CIML 11.1-11.2

Support Vector Machines

- In a nutshell
 - Perform regularized ERM $\hat{w} = \operatorname{argmin}_{w \in \mathbb{R}^d} \sum_{i=1}^n \ell(w; x_i, y_i) + \lambda ||w||_2^2$ with the loss

$$\ell(w; x, y) = (1 - y \cdot w^{\mathsf{T}} x)_{+} \quad \text{hinge loss}$$

- notation: $(z)_+ \coloneqq \max\{0, z\}$
- Interesting aspects
 - Works well in general
 - No corresponding probabilistic motivation
 - Geometric Interpretation: maximize the margin.

https://rohanvarma.me/Loss-Functions/

10

Remaining parts of the lecture

- Q1: How is the loss function motivated and how is it maximizing the margin?
- Q2: How to solve the SVM optimization problem efficiently?

SVM: motivation

- The goal of linear classifier: Find w so that the rule $h_w(x) = \operatorname{sign}(w^{\top}x)$ will have small generalization error $\operatorname{err}(h_w)$.
- ERM: it seems natural to use the loss $1{h_w(x) \neq y}$, but...
 - NP-hard (e.g. Guruswami and Raghavendra, 2009)
 - There might be multiple minima. How to break ties?
- Okay, we're stuck. Let us consider a <u>simple problem</u> and then try to extend it to the generic problem.
- The simple case: **linearly separable data** (recall perceptron)

Linearly separable data

- Recall: we can minimize 0-1 loss here with a reasonable time complexity!
 - e.g., run perceptron until it classifies train set perfectly
- But, among these minimizers, which one should we pick?
- Idea: pick the hyperplane such that its distances to all training examples are far

Facts on vectors

- (Lem 1) a vector x has distance $\frac{w^{\top}x}{\|w\|}$ to the hyperplane $w^{\top}x = 0$
- How about with bias? $w^{T}x + b = 0$
- Let us be explicit on the bias: $f(x; w, b) = w^{T}x + b$
- recall: w is orthogonal to the hyperplane $w^{T}x + b = 0$
 - why? (left as exercise)

Facts on vectors

• (Lem 2)
$$x$$
 has distance $\frac{|w^{T}x+b|}{||w||}$ to the hyperplane $w^{T}x + b = 0$
 $y > 0$
 $y = 0$
 $y < 0$
 $y < 0$
 x_{2}
 $y(x) \coloneqq w^{T}x + b$
claim1 : x can be written as $x = x_{\perp} + r\frac{w}{||w||}$ where x_{\perp} is the projection of x onto the hyperplane.
claim2 : then, $|r|$ is the distance between x and the hyperplane
Solving for r : $w^{T}x + b = w^{T}x_{\perp} + r\frac{w^{T}w}{||w||} + b = r||w||$.
this implies $|r| = \frac{|w^{T}x+b|}{||w||}$

SVM derivation (1)

• Margin of (w, b) over all training points: $\gamma'(w, b) = \min_{i} \frac{|w'x_i+b|}{||w||}$

Choose (w, b) with the maximum margin? .. wait, we also want it to be a perfect classifier
redefine it

$$\gamma(w,b) = \min_{i} \frac{y_i(w^{\mathsf{T}}x_i + b)}{\|w\|}$$

• Choose *w* with the maximum margin (and perfect classification)

$$\left(\widehat{w}, \widehat{b}\right) = \max_{w, b} \min_{i=1}^{n} \frac{y_i(w^{\top} x_i + b)}{\|w\|}$$

• One more issue: still, infinitely many solutions..!

SVM derivation (2)

$$(\widehat{w}, \widehat{b}) = \max_{w,b} \min_{i=1}^{n} \frac{y_i(w^{\mathsf{T}}x_i + b)}{\|w\|}$$

- Infinitely many solutions..
- It's actually a matter of removing 'duplicates'; ∃ many (w,b)'s that actually represent the same hyperplane.

- Quick solution
 = achieves the smallest margin
 - For any solution $(\widehat{w}, \widehat{b})$, let x_{i^*} be the <u>closest to the hyperplane</u> $\widehat{w}x_i + \widehat{b} = 0$
 - Imagine rescaling $(\widehat{w}, \widehat{b})$ so that $|\widehat{w}^{\top} x_{i^*} + \widehat{b}| = 1$
- We can always do that, but can we find a formulation that automatically finds that modified solution?
 - add the constraint $\min_{i} y_i(w^{\top}x_i + b) = 1$

SVM derivation (3)

$$\max_{\substack{w,b \ w,b}} \min_{i=1}^{n} \frac{y_i(w^{\top}x_i + b)}{\|w\|}$$

s.t.
$$\min_{i} y_i(w^{\top}x_i + b) = 1$$

- Summary: the constraint encodes (1) correct classification (2) there are no two solutions that represent the same hyperplane!
 - Note: If $(\widehat{w}, \widehat{b})$ is a solution, then the margin is $\frac{1}{\|\widehat{w}\|}$

$$\max_{\substack{w,b \ i \ w,b \ w,b \ i \ w,b \ w$$

Final formulation in the linearly separable setting: (quadratic programming)

$$\min_{\substack{w,b\\w,b}} \|w\|^2$$

s.t. $y_i(w^\top x_i + b) \ge 1, \forall i$

SVM in the nonseparable setting: Soft-margin

 $\min_{\substack{w,b\\w,b}} \|w\|^2$ s.t. $y_i(w^{\top}x_i + b) \ge 1, \forall i$

- What if data is linearly nonseparable?
- Introduce 'slack' variables

$$\min_{\substack{w,b,\{\xi_i \ge 0\}}} \|w\|^2 + C \sum_{i=1}^n \xi_i \quad //C \text{ is a hyper-parameter}$$

s.t. $y_i(w^{\mathsf{T}}x_i + b) \ge 1 - \xi_i, \forall i$

- Again, a quadratic programming problem
- Fix any w, b, the optimal ξ ?

$$\xi_i = 0 \text{ if } y_i(w^{\mathsf{T}}x_i + b) \ge 1, \text{ and } \xi_i = 1 - y_i(w^{\mathsf{T}}x_i + b)$$
$$\min_{w,b} \|w\|^2 + C \sum_{i=1}^n \left(1 - y_i(w^{\mathsf{T}}x_i + b)\right)_+ \Leftrightarrow \text{Regularized hinge loss minimization } \lambda = \frac{1}{c}$$

Solving SVM optimization problems

- Two popular methods
- Method 1: stochastic gradient descent
- Method 2: solve the *dual problem* and transform the dual solution back

0.5 -

-1.5

-1

2.5

1.5

-0.5

0.5

Π

y*f(x)

Stochastic Gradient Descent

Stochastic gradient descent (SGD)

- Finding $\widehat{w} = \operatorname{argmin}_{w \in \mathbb{R}^d} F(w)$, $F(w) = \frac{1}{n} \sum_{i=1}^n f_i(w)$, where $f_i(w)$ is convex + quadratic, e.g. $(1 - y_i \langle w, x_i \rangle)_+ + \lambda ||w||_2^2$, $\log(1 + \exp(-y_i \cdot w^{\mathsf{T}} x_i)) + \lambda ||w||_2^2$
- Observation: gradient descent is computationally expensive
 - calculating exact gradient $\nabla F(w)$ takes at least $\Omega(n)$ time
- Key idea (Robbins-Monro'51): descend in directions that are in-expectation $\nabla F(w)$
- For t = 1, 2, ..., T:
 - Choose $i_t \sim \text{Uniform}(\{1, ..., n\})$
 - $w_{t+1} \leftarrow w_t \eta_t \nabla f_{i_t}(w)$
- Output: (1) $\overline{w}_T := \frac{1}{T} \sum_{t=1}^T w_t$ (average iterate); (2) w_T (last iterate)

log₂(1+exp(-y*f(x)) max(0,1-y*f(x))

SGD: handling nondifferentiable objectives

• Hinge loss:

$$f(w) = h(w) + \frac{\lambda}{2} ||w||_2^2$$
, where $h(w) = (1 - y\langle w, x \rangle)_+$

- For some w, $\nabla h(w)$ does not exist (say, d=1)
- Workaround: descent in the subgradient direction

• [Def] For convex function $h, g \in \mathbb{R}^d$ is said to be a subgradient of h at w, if for any u, $h(u) \ge h(w) + \langle g, u - w \rangle$

The set of subgradients of h at w is denoted as $\partial h(w)$

• For differentiable h, $\partial h(w) = \{\nabla h(w)\}$

Subgradient: intuition and properties

• Example: $h(w) = (1 - w)_+$,

(Lem) If h(w) = l(⟨a,w⟩ + b) for some convex l on ℝ, and suppose z ∈ ∂l(⟨a,w⟩ + b). Then, az ∈ ∂h(w)
Generalizes chain rule of differentiation

Practical implication: For f(w) = (1 − y⟨w, x⟩)₊, the following vector(s) are in ∂f(w) (and are thus valid descent directions):

$$\begin{cases} -yx, & y\langle w, x \rangle < 1 \\ -uyx \text{ for } u \in [0,1], & y\langle w, x \rangle = 1 \\ 0, & y\langle w, x \rangle > 1 \end{cases}$$

SGD: convergence guarantee

• (Thm) Suppose $F(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$, where $f_i(w) = h_i(w) + \lambda ||w||_2^2$, and $h_i(w)$ is *L*-Lipschitz, then SGD with step size $\eta_t = \frac{1}{\lambda t}$ satisfies that

$$\mathbb{E}[F(\overline{w}_T)] - \min_{w} F(w) \le O\left(\frac{L^2 \log T}{\lambda T}\right),$$

where $\overline{w}_T = \frac{1}{T} \sum_{t=1}^T w_t$

• [Def] h is said to be L-Lipschitz, if for any $u, v, |h(u) - h(v)| \le L ||u - v||_2$

•
$$\tilde{O}\left(\frac{1}{T}\right)$$
 rate; if target optimization precision ϵ , then $O\left(\frac{1}{T}\right) \leq \epsilon \iff T \geq O\left(\frac{1}{\epsilon}\right)$

• Larger λ , "Smoother" $h_i \Longrightarrow$ easier to optimize

Shalev-Shwartz, Singer, Srebro, Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM", 2011

Solving SVM optimization problems

- Two popular methods
- Method 1: stochastic gradient descent
- Method 2: solve the *dual problem* and transform the dual solution back

Constrained optimization and Lagrange multiplier

• Lagrange multiplier: a powerful tool for solving *constrained* optimization problems.

$$\min_{w} f(w)$$

s.t. $g_i(w) \le 0, \forall i = 1, ..., k$
 $h_j(w) = 0, \forall j = 1, ..., \ell$

- Lagrangian: $\mathcal{L}(w, \alpha, \beta) \coloneqq f(w) + \sum_i \alpha_i g_i(w) + \sum_j \beta_j h_j(w)$, where α_i, β_j 's are Lagrange multipliers
- Define $\theta_P(w) \coloneqq \max_{\alpha,\beta:\alpha_i \ge 0,\forall i} \mathcal{L}(w,\alpha,\beta)$
- (Thm) $\theta_P(w) = \begin{cases} f(w), & \text{if } w \text{ satisfies all the constraints} \\ +\infty, & \text{otherwise} \end{cases}$
- This implies that solving the following *unconstrained* problem is equivalent to solving the original constrained problem!

$$\min_{w} \theta_{P}(w) = \min_{w} \max_{\alpha,\beta:\alpha_{i} \ge 0,\forall i} \mathcal{L}(w,\alpha,\beta)$$

The dual problem

- Why dual?
 - Alternative way of efficient optimization

Recall:
$$p^* \coloneqq \min_{w} \theta_P(w) = \min_{w} \max_{\alpha_1, \dots, \alpha_k \ge 0, \beta_1, \dots, \beta_\ell} \mathcal{L}(w, \alpha_{1:k}, \beta_{1:\ell})$$

- Dual problem: $d^* \coloneqq \max_{\alpha_1, \dots, \alpha_k \ge 0, \beta_1, \dots, \beta_\ell} \min_{w} \mathcal{L}(w, \alpha_{1:k}, \beta_{1:\ell})$
- [Def] "Strong duality holds": $p^* = d^*$
- To satisfy strong duality, we need conditions:
 - (1) f and g's are convex. h's are affine.
 - (2) Slater's condition: \exists feasible point x_0 : $g_i(x_0) < 0, i = 1, ..., k$

• For more properties, see e.g. Lieven Vandenberghe's lecture on convex optimization duality

Dual problem for homogeneous SVM

$$\min_{\substack{w \\ w \\ v \\ v \\ w \\ \tau \\ x_i \geq 1, \forall i }}^{\min \frac{1}{2}} \|w\|^2 - \sum_{i=1}^n \alpha_i (y_i w^\top x_i - 1)$$

s.t. $y_i w^\top x_i \geq 1, \forall i$

• Claim: the dual problem is

$$\max_{\alpha \ge 0} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\mathsf{T}} x_{j}$$

• Proof idea: the dual problem is $\max_{\alpha \ge 0} \min_{w} \mathcal{L}(w, \alpha)$; fix any α , the optimal w is such that

$$\frac{\partial \mathcal{L}}{\partial w} = w - \sum_{i=1}^{n} \alpha_i y_i x_i = 0 \implies w = \sum_i \alpha_i y_i x_i$$

Dual problem for nohomogeneous SVM

$$\min_{\substack{w,b \ 2}} \frac{1}{2} \|w\|^2 \qquad \qquad \mathcal{L}\left((w,b),\alpha\right) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^n \alpha_i (y_i(w^\top x_i + b) - 1)$$

s.t. $y_i(w^\top x_i + b) \ge 1, \forall i$

• Claim: the dual problem is $\max_{\alpha \ge 0} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\mathsf{T}} x_{j}$ $\text{s.t. } \sum_{i} \alpha_{i} y_{i} = 0$ $\frac{\partial \mathcal{L}}{\partial w} = w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \implies w = \sum_{i} \alpha_{i} y_{i} x_{i}$ $\frac{\partial \mathcal{L}}{\partial b} = -\sum_{i} \alpha_{i} y_{i} = 0$

Using the same reasoning as previous slide, you should be able to prove the claim!

The optimality condition

- From now on, suppose the strong duality holds.
- Then, w^* , (α^*, β^*) are optimal solutions to the primal and dual problems $\Leftrightarrow w^*$, (α^*, β^*) satisfy the following Karush-Kuhn-Tucker (KKT) condition

Feasibility $\alpha_i^* \ge 0, i = 1, ..., k$ $g_i(w^*) \le 0, i = 1, ..., k$ $h_j(w^*) = 0, j = 1, ..., \ell$

Stationarity

$$\frac{\partial \mathcal{L}}{\partial w}(w^*, \alpha^*, \beta^*) = 0$$

Complementary slackness $\alpha_i^* g_i(w^*) = 0, i = 1, ..., k$

- Implication: this links the primal optimal w^* to the dual optimal (α^*, β^*)
 - Enables recovery of near optimal w from near-optimal (α, β)

Optimality condition: stationarity

 w^* , the solution of

 $\min_{w} f(w)$
s. t. h(w) = 0

satisfies that $\nabla \mathcal{L}(w^*, \beta^*) = 0$ for some β^* , i.e.

 $\nabla f(w^*) = -\beta^* \, \nabla h(w^*)$

Key idea: if $\nabla f(w^*)$ is not collinear with $\nabla h(w^*) \Rightarrow$ can locally decrease f while staying in h(w) = 0

Ex: $f(w) = w_1^2 + w_2^2$, $h(w) = w_1 + w_2 - 1$ Optimal solution w^* satisfies: $(2w_1^*, 2w_2^*) = -\beta^*(1, 1) \Rightarrow w_1^* = w_2^*$

Optimality condition: complementary slackness

• w^* , the solution of

 $\min_{w} f(w)$
s.t. $g(w) \le 0$

satisfies that, there exists some dual variable $\alpha^* \ge 0$, s.t. (1) $\nabla \mathcal{L}(w^*, \alpha^*) = 0$ for some, i.e. $\nabla f(w^*) = -\alpha^* \nabla g(w^*)$ (2) $\alpha^* \cdot g(w^*) = 0$

- Case 1: $g(w^*) < 0 \Rightarrow \alpha^* = 0 \Rightarrow \nabla f(w^*) = 0$
- Case 2: $g(w^*) = 0 \Rightarrow \nabla f(w^*)$ needs to be collinear with $\nabla g(w^*)$

The dual problem

$$\min_{\substack{w,b \ w,b}} \frac{1}{2} \|w\|^2$$

s.t. $y_i(w^{\top} x_i + b) \ge 1, \forall i$

- Quadratic programming
- Affine constraints
- n variables vs d+1 variables
- Why bother with n variables?

$$\max_{\alpha \ge 0} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\mathsf{T}} x_{j}$$

s.t. $\sum_{i} \alpha_{i} y_{i} = 0$

• How to get back the primal solution?

Use optimality condition: $\frac{\partial \mathcal{L}}{\partial w}(w^*, \alpha^*) = w^* - \sum_{i=1}^n \alpha_i^* y_i x_i = 0$ $\implies w^* = \sum_i \alpha_i^* y_i x_i$

Hard-margin SVM: interpretation of dual variables

• Stationarity
$$\Rightarrow w^* = \sum_i \alpha_i^* y_i x_i$$

• Support vectors: those data points *i* with
$$\alpha_i^* > 0$$
.

• Complementary slackness
$$\Rightarrow \alpha_i^* \left(1 - y_i \left(w^{* \top} x_i + b^* \right) \right) = 0$$

i.e.
$$\alpha_i^* > 0 \Rightarrow y_i(w^{*^{\mathsf{T}}}x_i + b^*) = 1$$

- Implications:
 - Can use this to recover b^* from α^*
 - SVM "compresses" training set

$$\max_{\alpha \ge 0} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\mathsf{T}} x_{j}$$

s.t. $\sum_{i} \alpha_{i} y_{i} = 0$

https://www.cs.cmu.edu/~aarti/Class/10315_Fall20/lecs/svm_dual_kernel.pdf

The dual problem for soft-margin SVM

$$\min_{\substack{w,b,\xi_{1:n} \\ i \in \mathbb{Z}}} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

s.t. $y_i(w^\top x_i + b) \ge 1 - \xi_i, \forall i$
 $\xi_i \ge 0, \forall i$

- Lagrangian: $\mathcal{L}(w, b, \xi, \alpha, \gamma) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i \sum_{i=1}^n \alpha_i (y_i (w^\top x_i + b) 1 + \xi_i) \sum_{i=1}^n \gamma_i \xi_i$
- Dual problem: maximize $D(\alpha, \gamma) := \min_{w,b,\xi} \mathcal{L}(w, b, \xi, \alpha, \gamma)$
- $\frac{\partial \mathcal{L}}{\partial w} = 0 \Rightarrow w = \sum_{i=1}^{n} \alpha_i \cdot y_i x_i$
- $\frac{\partial \mathcal{L}}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$
- $\frac{\partial \mathcal{L}}{\partial \xi_i} = C (\alpha_i + \gamma_i) = 0$

The dual problem for soft-margin SVM (cont'd)

• Plugging the optimality conditions into $D(\alpha, \gamma) := \min_{w, b, \xi} \mathcal{L}(w, b, \xi, \alpha, \gamma)$, with some algebra, we have:

$$D(\alpha, \gamma) = \begin{cases} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}, & \sum_{i} \alpha_{i} y_{i} = 0, \alpha_{i} + \gamma_{i} = C, \forall i \\ -\infty, & \text{otherwise} \end{cases}$$

- Dual problem: $\max_{\alpha \ge 0, \gamma \ge 0} D(\alpha, \gamma)$
- Representing γ in terms of α , the dual problem is equivalent to:

$$\max_{0 \le \alpha \le C} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\mathsf{T}} x_{j}$$

s.t. $\sum_{i} \alpha_{i} y_{i} = 0$

• Remark: for homogeneous version, same dual problem without equality constraint (exercise)

Soft-margin SVM: Support vectors

- Support vectors: those data points *i* with $\alpha_i^* > 0$.
- Stationary condition:
- $\frac{\partial \mathcal{L}}{\partial w} = 0 \Rightarrow w^* = \sum_{i=1}^n \alpha_i^* \cdot y_i x_i$

$$\max_{0 \le \alpha \le C} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\mathsf{T}} x_{j}$$

s.t. $\sum_{i} \alpha_{i} y_{i} = 0$

Figure from Ben-Hur & Weston, *Methods in Molecular Biology* 2010

Soft-margin SVM: additional remarks

• Complementary slackness \Rightarrow

For all *i*,
$$\gamma_i^* \xi_i^* = 0$$
 and $\alpha_i^* (y_i (w^{* \top} x_i + b^*) - 1 + \xi_i^*) = 0$

• Therefore, $\alpha_i^* > 0 \Rightarrow y_i (w^{*^{\mathsf{T}}} x_i + b^*) = 1 - \xi_i^* \le 1$

- $\alpha_i^* \in (0, C) \Rightarrow \gamma_i^* \in (0, C) \Rightarrow \xi_i^* = 0 \Rightarrow y_i (w^{*\top} x_i + b^*) = 1$
 - Use this to recover b^*

https://ankitnitjsr13.medium.com/math-behind-svm-support-vector-machine-864e58977fdb

Dual SVM: optimization

• Solving

$$\max_{0 \le \alpha \le C} D(\alpha) \coloneqq \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\mathsf{T}} x_{j}$$

coordinate ascent (SDCA):

- In practice: use stochastic dual coordinate ascent (SDCA):
- For t = 1, 2, ...
 - Choose $i \sim \text{Uniform}(\{1, \dots, n\})$
 - $\alpha_i \leftarrow \operatorname{argmax}_{\alpha_i \in [0,C]} D(\alpha_1, \dots, \alpha_i, \dots, \alpha_n) a$ univariate constrained quadratic maximization
- For the nonhomogeneous version:

$$\max_{0 \le \alpha \le C} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\mathsf{T}} x_{j}$$

s.t. $\sum_{i} \alpha_{i} y_{i} = 0$

• Popular algorithm: Sequential minimal optimization (SMO) (Platt, 1998)

cov1

0.9

0.8

0.7

0.6

Pegasos SDCA SVM-Perf

LASVM

SVM: summary

- Hinge loss & geometric motivation
- Optimization: finding the ERM
- Lagrange multiplier
 - I will include a few homework problems on this
- Dual formulation
 - why bother? kernel methods!

Next class (9/28)

- Kernel methods
- Assigned reading: CIML 11.4, 11.5 (Review of SVM dual formulation)