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Classification with linear models

• Logistic loss

• 𝑥𝑖 ∈ ℝ𝑑,   𝑦𝑖 ∈ 1,−1

• 𝑆 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛

• ℓ 𝑤; 𝑥𝑖 , 𝑦𝑖 = log(1 + exp(−𝑦𝑖 ⋅ 𝑤
⊤𝑥𝑖))

• The ERM principle, again!
ෝ𝑤 = argmin𝑤∈ℝ𝑑𝐹 𝑤 , 𝐹(𝑤) ≔ σ𝑖=1

𝑛 ℓ 𝑤; 𝑥𝑖 , 𝑦𝑖

• How to optimize?
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𝑦𝑖𝑤
⊤𝑥𝑖



First, is it convex?

• How do we check the convexity of 𝐹?

• Is ℓ 𝑤; 𝑥𝑖 , 𝑦𝑖 = log(1 + exp(−𝑦𝑖 ⋅ 𝑤
⊤𝑥𝑖)) convex in 𝑤?

• Observation: ℓ 𝑤; 𝑥𝑖 , 𝑦𝑖 = ℎ(𝑦𝑖 ⋅ 𝑤
⊤𝑥𝑖) where ℎ 𝑧 = log(1 + exp(−𝑧))

• It suffices to check that ℎ 𝑧 is convex

• Indeed, ℎ′′ 𝑧 =
𝑒−𝑧

1+𝑒−𝑧 2 ≥ 0

• Alternative route: check the PSD-ness of ∇2ℓ 𝑤; 𝑥𝑖 , 𝑦𝑖

• Great! Let’s solve ∇𝐹 𝑤 = 0
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Finding the minimizer of 𝐹: gradient descent

• Algorithm
Input: initial point                 𝑤0 ∈ ℝ𝑑

step sizes                   𝜂𝑡 𝑡=1
∞

stopping tolerence 𝜖 > 0
For 𝑡 = 1,… , max_iter

• 𝑤𝑡 ← 𝑤𝑡−1 − 𝜂𝑡 ⋅ ∇𝐹 𝑤𝑡−1

• stop if 
𝐹 𝑤𝑡 −𝐹 𝑤𝑡−1

𝐹 𝑤𝑡−1
≤ 𝜖

4

Hyperparameters
• 𝑤0: set it to 0

• warmstart possible if you have a good guess
• stepsize

• constant scheme: 𝜂𝑡 = 𝜂, ∀𝑡

• 𝜂𝑡 =
1

𝑡

• 𝜂𝑡 =
1

𝑡

• Line search possible
• 𝜖: 10−4 to 10−7… more of engineering.

http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf



More iterative methods

Algorithms Number if iterations until 
convergence

Time complexity per 
iteration

Newton’s method Very small 𝑛𝑑3

LBFGS small 𝑛𝑚𝑑

Gradient descent (GD) large 𝑛𝑑

Stochastic gradient descent 
(SGD)

Very large 𝑑
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• 𝑛: #training examples
• 𝑑: dimensionality 
• 𝑚: LBFGS’s memory hyperparameter
• Will come back to SGD in later part of this lecture



Probabilistic interpretation of logistic regression

• How did they come up with the logistic loss?

• Let us begin using 1/0 encoding for the label (then later turn into 1/-1 encoding)

• 𝑦𝑖 ∣ 𝑥𝑖 ∼ Bernoulli(𝑝𝑖), where 𝑝𝑖 = 𝑔(𝑥𝑖)

• Modeling attempt 1: 𝑔 𝑥𝑖 = 𝑤⊤𝑥𝑖

• Modeling attempt 2: 𝑔 𝑥𝑖 = 𝜎(𝑤⊤𝑥𝑖), where 𝜎 𝑧 =
1

1+𝑒−𝑧
is the sigmoid function

• i.e. logit log
𝑝𝑖

1−𝑝𝑖
= 𝑤⊤𝑥𝑖
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Probabilistic interpretation of logistic regression
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Logistic regression as maximum likelihood estimation 𝑦𝑖 ∣ 𝑥𝑖 ∼ Bernoulli(𝜎(𝑤⊤𝑥𝑖))



Caveat: Logistic regression may not have a minimizer 
without a regularizer
• E.g., 

• training set has only one data point

• more generally, linearly separable data.

• Structure of minimizers, optimization properties discussed in

• Adding regularization addresses this issue: 

ෝ𝑤 = argmin𝑤∈ℝ𝑑 σ𝑖=1
𝑛 ℓ 𝑤; 𝑥𝑖 , 𝑦𝑖 + 𝜆 𝑤 2

2
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Next class (9/26)

• Dual of SVM; induced practical optimization algorithms

• Kernel methods 

• Plan to release HW2

• Assigned reading: CIML 11.1-11.2
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Support Vector Machines

• In a nutshell

• Perform regularized ERM ෝ𝑤 = argmin𝑤∈ℝ𝑑 σ𝑖=1
𝑛 ℓ 𝑤; 𝑥𝑖 , 𝑦𝑖 + 𝜆 𝑤 2

2

with the loss
ℓ 𝑤; 𝑥, 𝑦 = 1 − 𝑦 ⋅ 𝑤⊤𝑥 +

• notation: 𝑧 + ≔ max{0, 𝑧}

• Interesting aspects

• Works well in general

• No corresponding probabilistic motivation

• Geometric Interpretation: maximize the margin.
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https://rohanvarma.me/Loss-Functions/

hinge loss



Remaining parts of the lecture

• Q1: How is the loss function motivated and how is it maximizing the margin?

• Q2: How to solve the SVM optimization problem efficiently?
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SVM: motivation

• The goal of linear classifier: Find 𝑤 so that the rule ℎ𝑤 𝑥 = sign(𝑤⊤𝑥) will have small 
generalization error err(ℎ𝑤).

• ERM: it seems natural to use the loss 1{ℎ𝑤 𝑥 ≠ 𝑦}, but…

• NP-hard (e.g. Guruswami and Raghavendra, 2009)

• There might be multiple minima. How to break ties?

• Okay, we’re stuck. Let us consider a simple problem and then try to extend it to the generic 
problem.

• The simple case: linearly separable data (recall perceptron)
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https://www.cs.cornell.edu/courses/cs6781/2020sp/lectures/10_hardness2.pdf



Linearly separable data

• Recall: we can minimize 0-1 loss here with a reasonable time complexity!

• e.g., run perceptron until it classifies train set perfectly

• But, among these minimizers, which one should we pick?

• Idea: pick the hyperplane such that its

distances to all training examples are far  
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Facts on vectors

• (Lem 1) a vector 𝑥 has distance 
𝑤⊤𝑥

𝑤
to the hyperplane 𝑤⊤𝑥 = 0

• How about with bias? 𝑤⊤𝑥 + 𝑏 = 0

• Let us be explicit on the bias: 𝑓 𝑥;𝑤, 𝑏 = 𝑤⊤𝑥 + 𝑏

• recall: 𝑤 is orthogonal to the hyperplane 𝑤⊤𝑥 + 𝑏 = 0

• why? (left as exercise)
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𝑥⊥

𝑧



Facts on vectors

• (Lem 2) 𝑥 has distance 
𝑤⊤𝑥+𝑏

𝑤
to the hyperplane 𝑤⊤𝑥 + 𝑏 = 0

15Figure from Pattern Recognition and Machine Learning, Bishop

𝑦 𝑥 ≔ 𝑤⊤𝑥 + 𝑏

claim1 : 𝑥 can be written as 𝑥 = 𝑥⊥ + 𝑟
𝑤

‖𝑤‖
where 𝑥⊥ is the 

projection of 𝑥 onto the hyperplane.

claim2 : then, 𝑟 is the distance between 𝑥 and the hyperplane

Solving for 𝑟:  𝑤⊤𝑥 + 𝑏 = 𝑤⊤𝑥⊥ + 𝑟
𝑤⊤𝑤

𝑤
+ 𝑏 = 𝑟‖𝑤‖.

this implies 𝑟 =
|𝑤⊤𝑥+𝑏|

‖𝑤‖

−
𝑤0

‖𝑤‖



SVM derivation (1)

• Margin of (𝑤, 𝑏) over all training points: 𝛾′(𝑤, 𝑏) = min
𝑖

𝑤⊤𝑥𝑖+𝑏

𝑤

• Choose (𝑤, 𝑏) with the maximum margin? .. wait, we also want it to be a perfect classifier

• redefine it

𝛾(𝑤, 𝑏) = min
𝑖

𝑦𝑖 𝑤
⊤𝑥𝑖 + 𝑏

𝑤

• Choose 𝑤 with the maximum margin (and perfect classification)

ෝ𝑤, ෠𝑏 = max
𝑤,𝑏

min𝑖=1
𝑛 𝑦𝑖 𝑤

⊤𝑥𝑖 + 𝑏

𝑤

• One more issue: still, infinitely many solutions..!
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SVM derivation (2)

• Infinitely many solutions..

• It’s actually a matter of removing ‘duplicates’; ∃ many (w,b)’s that actually represent the same 
hyperplane.

• Quick solution

• For any solution ෝ𝑤, ෠𝑏 , let 𝑥𝑖∗ be the closest to the hyperplane ෝ𝑤𝑥𝑖 + ෠𝑏 = 0

• Imagine rescaling ෝ𝑤, ෠𝑏 so that ෝ𝑤⊤𝑥𝑖∗ + ෠𝑏 = 1

• We can always do that, but can we find a formulation that automatically finds that modified 
solution? 

• add  the constraint min
𝑖

𝑦𝑖 𝑤
⊤𝑥𝑖 + 𝑏 = 1

17

ෝ𝑤, ෠𝑏 = max
𝑤,𝑏

min𝑖=1
𝑛 𝑦𝑖 𝑤

⊤𝑥𝑖 + 𝑏

𝑤

= achieves the smallest margin



SVM derivation (3)

• Summary: the constraint encodes (1) correct classification (2) there are no two solutions that 
represent the same hyperplane!

• Note: If ෝ𝑤, ෠𝑏 is a solution, then the margin is 
1

ෝ𝑤
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max
𝑤,𝑏

min𝑖=1
𝑛 𝑦𝑖 𝑤

⊤𝑥𝑖 + 𝑏

𝑤
𝑠. 𝑡. min

i
𝑦𝑖 𝑤

⊤𝑥𝑖 + 𝑏 = 1

max
𝑤,𝑏

1

𝑤
𝑠. 𝑡. min

i
𝑦𝑖 𝑤

⊤𝑥𝑖 + 𝑏 = 1

max
𝑤,𝑏

1

𝑤
𝑠. 𝑡. min

𝑖
𝑦𝑖 𝑤

⊤𝑥𝑖 + 𝑏 ≥ 1

max
𝑤,𝑏

1

𝑤
𝑠. 𝑡. 𝑦𝑖 𝑤

⊤𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖

min
𝑤,𝑏

𝑤 2

s. t. 𝑦𝑖 𝑤
⊤𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖

Final formulation in the linearly separable setting:
(quadratic programming)

(turns out to be equivalent..)



SVM in the nonseparable setting: Soft-margin 

• What if data is linearly nonseparable? 

• Introduce ’slack’ variables

• Again, a quadratic programming problem

• Fix any 𝑤, 𝑏, the optimal 𝜉?

𝜉𝑖 = 0 if 𝑦𝑖 𝑤
⊤𝑥𝑖 + 𝑏 ≥ 1, and 𝜉𝑖 = 1 − 𝑦𝑖 𝑤

⊤𝑥𝑖 + 𝑏
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min
𝑤,𝑏

𝑤 2

𝑠. 𝑡. 𝑦𝑖 𝑤
⊤𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖

min
𝑤,𝑏,{𝜉𝑖≥0}

𝑤 2 + 𝐶෍

𝑖=1

𝑛

𝜉𝑖

𝑠. 𝑡. 𝑦𝑖 𝑤
⊤𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , ∀𝑖

// 𝐶 is a hyper-parameter

min
𝑤,𝑏

𝑤 2 + 𝐶෍

𝑖=1

𝑛

1 − 𝑦𝑖 𝑤
⊤𝑥𝑖 + 𝑏

+
⟺ Regularized hinge loss minimization 𝜆 =

1

𝐶



Solving SVM optimization problems

• Two popular methods

• Method 1: stochastic gradient descent

• Method 2: solve the dual problem and transform the dual solution back
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Stochastic gradient descent (SGD)

• Finding ෝ𝑤 = argmin𝑤∈ℝ𝑑𝐹 𝑤 , 𝐹 𝑤 =
1

𝑛
σ𝑖=1
𝑛 𝑓𝑖(𝑤) , 

where 𝑓𝑖 𝑤 is convex + quadratic, e.g.

1 − 𝑦𝑖 𝑤, 𝑥𝑖 + + 𝜆 𝑤 2
2,

log(1 + exp(−𝑦𝑖 ⋅ 𝑤
⊤𝑥𝑖)) + 𝜆 𝑤 2

2

• Observation: gradient descent is computationally expensive

• calculating exact gradient ∇𝐹 𝑤 takes at least Ω(𝑛) time 

• Key idea (Robbins-Monro’51): descend in directions that are in-expectation ∇𝐹 𝑤

• For 𝑡 = 1, 2, … , 𝑇:

• Choose 𝑖𝑡 ∼ Uniform 1,… , 𝑛

• 𝑤𝑡+1 ← 𝑤𝑡 − 𝜂𝑡∇𝑓𝑖𝑡(𝑤)

• Output: (1) ഥ𝑤𝑇: =
1

𝑇
σ𝑡=1
𝑇 𝑤𝑡 (average iterate); (2) 𝑤𝑇 (last iterate)
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SGD: handling nondifferentiable objectives

• Hinge loss: 

𝑓 𝑤 = ℎ 𝑤 +
𝜆

2
𝑤 2

2, where ℎ 𝑤 = 1 − 𝑦 𝑤, 𝑥 +

• For some 𝑤, ∇ℎ 𝑤 does not exist (say, d=1)

• Workaround: descent in the subgradient direction 

• [Def] For convex function ℎ, 𝑔 ∈ ℝ𝑑 is said to be a subgradient of ℎ at 𝑤, if for any 𝑢, 
ℎ 𝑢 ≥ ℎ 𝑤 + ⟨𝑔, 𝑢 − 𝑤⟩

The set of subgradients of ℎ at 𝑤 is denoted as 𝜕ℎ(𝑤)

• For differentiable ℎ, 𝜕ℎ 𝑤 = ∇ℎ 𝑤
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Subgradient: intuition and properties

• Example: ℎ(𝑤) = 1 − 𝑤 +,

𝜕ℎ 𝑤 = ቐ

{−1}, 𝑤 < 1

−1,0 , 𝑤 = 1
{0}, 𝑤 > 1

• (Lem) If ℎ 𝑤 = 𝑙 𝑎, 𝑤 + 𝑏 for some convex 𝑙 on ℝ, and suppose 𝑧 ∈ 𝜕𝑙( 𝑎, 𝑤 + 𝑏). Then, 𝑎𝑧 ∈ 𝜕ℎ(𝑤)

• Generalizes chain rule of differentiation

• Practical implication: For 𝑓 𝑤 = 1 − 𝑦 𝑤, 𝑥 +, the following vector(s) are in 𝜕𝑓 𝑤 (and are thus valid 
descent directions):

ቐ

−𝑦𝑥, 𝑦 𝑤, 𝑥 < 1

−𝑢𝑦𝑥 for 𝑢 ∈ 0,1 , 𝑦 𝑤, 𝑥 = 1

0, 𝑦 𝑤, 𝑥 > 1
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SGD: convergence guarantee

• (Thm) Suppose 𝐹 𝑤 =
1

𝑛
σ𝑖=1
𝑛 𝑓𝑖(𝑤), where 𝑓𝑖 𝑤 = ℎ𝑖 𝑤 + 𝜆 𝑤 2

2, and 

ℎ𝑖 𝑤 is 𝐿-Lipschitz, then SGD with step size 𝜂𝑡 =
1

𝜆𝑡
satisfies that 

𝔼 𝐹 ഥ𝑤𝑇 −min
𝑤

𝐹 𝑤 ≤ 𝑂
𝐿2 log 𝑇

𝜆𝑇
,

where ഥ𝑤𝑇 =
1

𝑇
σ𝑡=1
𝑇 𝑤𝑡

• [Def] ℎ is said to be 𝐿-Lipschitz, if for any 𝑢, 𝑣, ℎ 𝑢 − ℎ 𝑣 ≤ 𝐿 𝑢 − 𝑣 2

• ෨𝑂
1

𝑇
rate; if target optimization precision 𝜖, then 𝑂

1

𝑇
≤ 𝜖 ⟸ 𝑇 ≥ 𝑂

1

𝜖

• Larger 𝜆, “Smoother” ℎ𝑖 ⟹ easier to optimize

24Shalev-Shwartz, Singer, Srebro, Cotter, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM”, 2011



Solving SVM optimization problems

• Two popular methods

• Method 1: stochastic gradient descent

• Method 2: solve the dual problem and transform the dual solution back
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Constrained optimization and Lagrange multiplier

• Lagrange multiplier: a powerful tool for solving constrained optimization problems.
min
𝑤

𝑓(𝑤)

𝑠. 𝑡. 𝑔𝑖 𝑤 ≤ 0, ∀𝑖 = 1,… , 𝑘
ℎ𝑗 𝑤 = 0, ∀𝑗 = 1,… , ℓ

• Lagrangian: ℒ 𝑤, 𝛼, 𝛽 ≔ 𝑓 𝑤 + σ𝑖 𝛼𝑖𝑔𝑖 𝑤 + σ𝑗 𝛽𝑗ℎ𝑗(𝑤), where 𝛼𝑖, 𝛽𝑗’s are Lagrange multipliers

• Define 𝜃𝑃 𝑤 ≔ max
𝛼,𝛽:𝛼𝑖≥0,∀𝑖

ℒ(𝑤, 𝛼, 𝛽)

• (Thm) 𝜃𝑃(𝑤) = ቊ
𝑓 𝑤 , if 𝑤 satisfies all the constraints
+∞, otherwise

• This implies that solving the following unconstrained problem is equivalent to solving the original 
constrained problem!

min
𝑤

𝜃𝑃 𝑤 = min
𝑤

max
𝛼,𝛽:𝛼𝑖≥0,∀𝑖

ℒ(𝑤, 𝛼, 𝛽)
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The dual problem
• Why dual?

• Alternative way of efficient optimization

• Gives rise to “kernel trick”

• Dual problem: 𝑑∗ ≔ max
𝛼1,…,𝛼𝑘≥0,𝛽1,…,𝛽ℓ

min
𝑤

ℒ(𝑤, 𝛼1:𝑘 , 𝛽1:ℓ)

• [Def] “Strong duality holds”: 𝑝∗ = 𝑑∗

• To satisfy strong duality, we need conditions:

• (1) f and g’s are convex. h’s are affine.

• (2) Slater’s condition: ∃ feasible point 𝑥0: 𝑔𝑖 𝑥0 < 0, 𝑖 = 1,… , 𝑘

• For more properties, see e.g. Lieven Vandenberghe’s lecture on convex optimization duality

27

Recall: 𝑝∗ ≔ min
𝑤

𝜃𝑃 𝑤 = min
𝑤

max
𝛼1,…,𝛼𝑘≥0,𝛽1,…,𝛽ℓ

ℒ(𝑤, 𝛼1:𝑘 , 𝛽1:ℓ)

https://www.seas.ucla.edu/~vandenbe/ee236b/lectures/duality.pdf


Dual problem for homogeneous SVM

• Claim: the dual problem is 

• Proof idea: the dual problem is max
𝛼≥0

min
𝑤

ℒ(𝑤, 𝛼); fix any 𝛼, the optimal 𝑤 is such that

28

min
𝑤

1

2
𝑤 2

𝑠. 𝑡. 𝑦𝑖𝑤
⊤𝑥𝑖 ≥ 1, ∀𝑖

ℒ 𝑤, 𝛼 =
1

2
𝑤 2 −෍

𝑖=1

𝑛

𝛼𝑖 𝑦𝑖𝑤
⊤𝑥𝑖 − 1

max
𝛼≥0

෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖

෍

𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗

𝜕ℒ

𝜕𝑤
= 𝑤 −෍

𝑖=1

𝑛

𝛼𝑖𝑦𝑖𝑥𝑖 = 0 ⟹ 𝑤 =෍

𝑖

𝛼𝑖𝑦𝑖𝑥𝑖



Dual problem for nohomogeneous SVM

• Claim: the dual problem is 

29

min
𝑤,𝑏

1

2
𝑤 2

𝑠. 𝑡. 𝑦𝑖 𝑤
⊤𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖

ℒ 𝑤, 𝑏 , 𝛼 =
1

2
𝑤 2 −෍

𝑖=1

𝑛

𝛼𝑖(𝑦𝑖 𝑤
⊤𝑥𝑖 + 𝑏 − 1)

max
𝛼≥0

෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖

෍

𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗

s.t. σ𝑖 𝛼𝑖𝑦𝑖 = 0

𝜕ℒ

𝜕𝑤
= 𝑤 −෍

𝑖=1

𝑛

𝛼𝑖𝑦𝑖𝑥𝑖 = 0 ⟹ 𝑤 =෍

𝑖

𝛼𝑖𝑦𝑖𝑥𝑖

𝜕ℒ

𝜕𝑏
= −෍

𝑖

𝛼𝑖𝑦𝑖 = 0

Using the same reasoning as previous slide, you should be able to prove the claim!



The optimality condition

• From now on, suppose the strong duality holds.

• Then, 𝑤∗, (𝛼∗, 𝛽∗) are optimal solutions to the primal and dual problems ⇔

𝑤∗, (𝛼∗, 𝛽∗) satisfy the following Karush-Kuhn-Tucker (KKT) condition

• Implication: this links the primal optimal 𝑤∗ to the dual optimal (𝛼∗, 𝛽∗)

• Enables recovery of near optimal 𝑤 from near-optimal (𝛼, 𝛽)

30

Stationarity
𝜕ℒ

𝜕𝑤
(𝑤∗, 𝛼∗, 𝛽∗) = 0

Feasibility
𝛼𝑖
∗ ≥ 0, 𝑖 = 1,… , 𝑘

𝑔𝑖(𝑤
∗) ≤ 0, 𝑖 = 1,… , 𝑘

ℎ𝑗 𝑤
∗ = 0, 𝑗 = 1,… , ℓ

Complementary slackness
𝛼𝑖
∗𝑔𝑖 𝑤

∗ = 0, 𝑖 = 1,… , 𝑘



Optimality condition: stationarity

𝑤∗, the solution of 

satisfies that ∇ℒ 𝑤∗, 𝛽∗ = 0 for some 𝛽∗, i.e. 

∇𝑓(𝑤∗) = −𝛽∗ ∇ℎ(𝑤∗)

Key idea: if ∇𝑓(𝑤∗) is not colinear with ∇ℎ(𝑤∗) ⇒ can locally decrease 𝑓 while staying in ℎ 𝑤 = 0

Ex: 𝑓 𝑤 = 𝑤1
2 +𝑤2

2,  ℎ 𝑤 = 𝑤1 +𝑤2 − 1

Optimal solution 𝑤∗ satisfies: 2𝑤1
∗, 2𝑤2

∗ = −𝛽∗ 1,1 ⇒ 𝑤1
∗ = 𝑤2

∗

31

min
𝑤

𝑓(𝑤)

𝑠. 𝑡. ℎ 𝑤 = 0



Optimality condition: complementary slackness

• 𝑤∗, the solution of 

satisfies that, there exists some dual variable 𝛼∗ ≥ 0, s.t.

(1) ∇ℒ 𝑤∗, 𝛼∗ = 0 for some, i.e. ∇𝑓(𝑤∗) = −𝛼∗∇𝑔(𝑤∗)

(2) 𝛼∗ ⋅ 𝑔 𝑤∗ = 0

• Case 1: 𝑔 𝑤∗ < 0 ⇒ 𝛼∗ = 0 ⇒ ∇𝑓 𝑤∗ = 0

• Case 2: 𝑔 𝑤∗ = 0 ⇒ ∇𝑓(𝑤∗) needs to be colinear with ∇𝑔(𝑤∗)
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min
𝑤

𝑓(𝑤)

𝑠. 𝑡. 𝑔 𝑤 ≤ 0



The dual problem

• Quadratic programming

• Affine constraints

• n variables vs d+1 variables

• Why bother with n variables?

33

max
𝛼≥0

෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖

෍

𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗

s.t. σ𝑖 𝛼𝑖𝑦𝑖 = 0

min
𝑤,𝑏

1

2
𝑤 2

𝑠. 𝑡. 𝑦𝑖 𝑤
⊤𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖

• How to get back the primal solution?

• Use optimality condition: 

𝜕ℒ

𝜕𝑤
(𝑤∗, 𝛼∗) = 𝑤∗ −෍

𝑖=1

𝑛

𝛼𝑖
∗𝑦𝑖𝑥𝑖 = 0

⟹ 𝑤∗ = σ𝑖 𝛼𝑖
∗𝑦𝑖𝑥𝑖



Hard-margin SVM: interpretation of dual variables

• Stationarity ⇒𝑤∗ = σ𝑖 𝛼𝑖
∗𝑦𝑖𝑥𝑖

• Support vectors: those data points 𝑖 with 𝛼𝑖
∗ > 0.

• Complementary slackness ⇒ 𝛼𝑖
∗ 1 − 𝑦𝑖 𝑤

∗⊤𝑥𝑖 + 𝑏∗ = 0

i.e. 𝛼𝑖
∗ > 0 ⇒ 𝑦𝑖 𝑤

∗⊤𝑥𝑖 + 𝑏∗ = 1

• Implications:

• Can use this to recover 𝑏∗ from 𝛼∗

• SVM “compresses” training set 
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max
𝛼≥0

෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖

෍

𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗

s.t. σ𝑖 𝛼𝑖𝑦𝑖 = 0

https://www.cs.cmu.edu/~aarti/Class/10315_Fall20/lecs/svm_dual_kernel.pdf



The dual problem for soft-margin SVM

• Lagrangian: ℒ 𝑤, 𝑏, 𝜉, 𝛼, 𝛾 =
1

2
𝑤 2 + 𝐶 σ𝑖=1

𝑛 𝜉𝑖 − σ𝑖=1
𝑛 𝛼𝑖 𝑦𝑖 𝑤

⊤𝑥𝑖 + 𝑏 − 1 + 𝜉𝑖 − σ𝑖=1
𝑛 𝛾𝑖𝜉𝑖

• Dual problem: maximize 𝐷 𝛼, 𝛾 := min
𝑤,𝑏,𝜉

ℒ 𝑤, 𝑏, 𝜉, 𝛼, 𝛾

•
𝜕ℒ

𝜕𝑤
= 0 ⇒ 𝑤 = σ𝑖=1

𝑛 𝛼𝑖 ⋅ 𝑦𝑖𝑥𝑖

•
𝜕ℒ

𝜕𝑏
= 0 ⇒ σ𝑖=1

𝑛 𝛼𝑖𝑦𝑖 = 0

•
𝜕ℒ

𝜕𝜉𝑖
= 𝐶 − 𝛼𝑖 + 𝛾𝑖 = 0
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min
𝑤,𝑏,𝜉1:𝑛

1

2
𝑤 2 + 𝐶෍

𝑖=1

𝑛

𝜉𝑖

𝑠. 𝑡. 𝑦𝑖 𝑤
⊤𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , ∀𝑖
𝜉𝑖 ≥ 0, ∀𝑖



The dual problem for soft-margin SVM (cont’d)

• Plugging the optimality conditions into 𝐷 𝛼, 𝛾 ∶= min
𝑤,𝑏,𝜉

ℒ 𝑤, 𝑏, 𝜉, 𝛼, 𝛾 , with some algebra, we have: 

𝐷 𝛼, 𝛾 = ൞
෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖

෍

𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗 , ෍

𝑖

𝛼𝑖𝑦𝑖 = 0 , 𝛼𝑖 + 𝛾𝑖 = 𝐶, ∀𝑖

−∞, otherwise

• Dual problem: max
𝛼≥0,𝛾≥0

𝐷 𝛼, 𝛾

• Representing 𝛾 in terms of 𝛼, the dual problem is equivalent to:

• Remark: for homogeneous version, same dual problem without equality constraint (exercise)
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max
0≤𝛼≤𝐶

෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖

෍

𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗

s.t. σ𝑖 𝛼𝑖𝑦𝑖 = 0



Soft-margin SVM: Support vectors

• Support vectors: those data points 𝑖 with 𝛼𝑖
∗ > 0.

• Stationary condition:

•
𝜕ℒ

𝜕𝑤
= 0 ⇒ 𝑤∗ = σ𝑖=1

𝑛 𝛼𝑖
∗ ⋅ 𝑦𝑖𝑥𝑖
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max
0≤𝛼≤𝐶

෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖

෍

𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗

s.t. σ𝑖 𝛼𝑖𝑦𝑖 = 0



Soft-margin SVM: additional remarks

• Complementary slackness ⇒

For all 𝑖, 𝛾𝑖
∗𝜉𝑖

∗ = 0 and 𝛼𝑖
∗ 𝑦𝑖 𝑤

∗⊤𝑥𝑖 + 𝑏∗ − 1 + 𝜉𝑖
∗ = 0

• Therefore, 𝛼𝑖
∗ > 0 ⇒ 𝑦𝑖 𝑤

∗⊤𝑥𝑖 + 𝑏∗ = 1 − 𝜉𝑖
∗ ≤ 1

• 𝛼𝑖
∗ ∈ (0, 𝐶) ⇒ 𝛾𝑖

∗ ∈ 0, 𝐶 ⇒ 𝜉𝑖
∗ = 0 ⇒ 𝑦𝑖 𝑤

∗⊤𝑥𝑖 + 𝑏∗ = 1

• Use this to recover 𝑏∗

38https://ankitnitjsr13.medium.com/math-behind-svm-support-vector-machine-864e58977fdb



Dual SVM: optimization

• Solving

• In practice: use stochastic dual coordinate ascent (SDCA): 

• For 𝑡 = 1,2, . .

• Choose 𝑖 ∼ Uniform 1,… , 𝑛

• 𝛼𝑖 ← argmax𝛼𝑖∈ 0,𝐶 𝐷(𝛼1, … , 𝛼𝑖 , … , 𝛼𝑛) – a univariate constrained quadratic maximization

• For the nonhomogeneous version: 

• Popular algorithm: Sequential minimal optimization (SMO) (Platt, 1998)
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max
0≤𝛼≤𝐶

𝐷 𝛼 ≔෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖

෍

𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗

max
0≤𝛼≤𝐶

෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖

෍

𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
⊤𝑥𝑗

s.t. σ𝑖 𝛼𝑖𝑦𝑖 = 0



SVM: summary

• Hinge loss & geometric motivation

• Optimization: finding the ERM

• Lagrange multiplier

• I will include a few homework problems on this

• Dual formulation

• why bother? kernel methods!
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Next class (9/28)

• Kernel methods 

• Assigned reading: CIML 11.4, 11.5 (Review of SVM dual formulation)
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