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Overview

* Linearity — recall perceptron
* h(x) = sign({w, x) + b) — classification
* h(x) = {(w,x) + b - regression

* Why linear?
e Simplicity
* Interpretability
* Computational efficiency

* First, linear regression (this lecture)




Regression example

Figure 2: Old Faithful geyser in Yellowstone National Park



Eruption prediction

» Example: When will “Old Faithful” geyser erupt?
» Predict “time between eruptions”
» Old Faithful Geyser Data
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» Mean on past 136 observations: i = 70.7941 minutes
» So predict § = 1 = 70.7941
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» Mean squared error on next 136 observations: 187.1894
» Square root: 13.6817 minutes

h(x) = b (no feature)

mean squared error.

17’l
—~ 2
;E (v, —Y;)
=1



Eruption prediction

» Henry Woodward observed that “time between eruptions” seems
related to “duration of latest eruption”
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duration of last eruption

» Use “duration of latest eruption” as feature x

» Can use = to predict time until next eruption, y
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Formal intro to regression

* Recall classification: Y =0or 1; use 0/1loss (y,y) = I1(y # y)

* Regression: Y € R; which loss?

e Square loss £(y,9) = (y — 9)?
* Absolute loss 2(y, V) = |y — J|

* Terminology

* expected loss (= risk) Rp (h) = Ep [(y - h(x))z]

(cf. true error rate)

. A 21 1.anp 2 .
* empirical loss (= emp. risk) R,,(h) = Eg [(y = h(x)) ] == i=1(yi = h(xl-)) (cf. training error rate)
» regression function h*(x) = argminyE[(Y — 9?1 X =x] (cf. Bayes classifier)

e Bayes risk Ry (h*) (cf. Bayes error)



Linear regression

* The linear class of functions
H ={h:h(x) = (w,x) + b, forsomew € R, b € R} (nonhomogeneous linear class)

H = {h: h(x) = (w, x), for some w € R%} (homogeneous linear class)
* Parametric model class

e Cf. nonparametric models
* it does not mean 'no parameters’
* it means the number of parameters are not fixed before training ' m

m B \
* examples: decision trees, k-NN . N )



Training linear regression models

The Empirical Risk Minimization (ERM) principle:

The traindata S = {(x1,V1), .., (X, Yn)}

s - D 1
e W = argv{}%}l{b [Rn(hW) p— ; ?zl(WTXi T yi)Z]

[ ]
Sales of Ice cream(Y)

An optimization problem

Objective function

Temperature (X)

How to solve it?



Solving the optimization problem

Hm—sz—%]

w= arg 1 mln

Optimality condition: W needs to satisfy VF (W) = 0,

w —w'x —y)—w'x —y)?

where VF (w) := (V1F(W) VdF(W)) (aavfl aavf ’aa_vf;)
ViiwTx —y)? = dCGES) 2wTx —y) - A x)

=2(w'x —y)x; = V(w'x —y)*=

6Wj aWj

VF(w) =Y 2(w'x; —y)x; =0

= Nl xx wo= B yix

= w=1V"1c where c =Y yix;, V = Y-, x;x;

One issue? When does that happen?

2(wTx —y)x
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Same derivation with matrix notations

w = arg min F(w) = |lXw —yll;

F(w) = f(g(w)), where gw) = Xw —y, f(v) = ||v||3

* Chain rule of differentiation: W s 1
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The issue of inversion

* The inverse may not exist! when does it happen?
(Zico Kolter’s linear algebra review p12;

° i d
The instances {x4, ..., X, } do not span the full R* space link in lec00 slides)

e Guaranteed to happenifn <d

* In this case, turns out there are infinitely many w’s that satisfies X ' Xw = X Ty (thus an optimal
solution)

* Among those w’s, the one with the minimum norm can be found by replacing the inverse with
Penrose-Moore pseudo inverse (function pinv() in numpy):

w=TNXTYy = Xty
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Regularized linear regression

e Ordinary least squares (OLS) vs Regularized least squares (RLS, ridge 5 o)
reg reSSion) EOGDD: —— Ridge Regression
—— Linear Regression
. 2 2 40000 1 —— Lasso Regression
) arg m‘A}n ||XW B y || 2 + A | | W || 2 o i i é YeaiofEx irience If’ j é

 Why regularize?
e Control the complexity of predictor 1

* Avoid overfitting T
: : : : g 1 L 1 1
Without Regularization With Regularization

(Overfit) (Good fit)

Kernel Regression on MNIST
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log(error)

 When does the regularization not help?

e Regression function is in the class & there is no label noise

0.0 0.2 0.4 0.6 0.8 1. 1.2

https://tyliang.github.io/Tengyuan.Liané"fﬁ)df/sliodes-Duke.pdf



Variations: LASSO

e LASSO: replaces A||w||5 with A||w]||4
 variable selection property => most coefficients are 0

* Under some mathematical assumptions & the right A value, researchers have shown that
features with zero coefficients are truly irrelevant features.

* Prediction error is almost as good as an “oracle” linear regression that is run with only those
relevant features.

* no more closed form => iterative methods

* A big open problem in ML: being able to throw in all the possible features in, but still perform as
good as knowing the truly relevant features ahead of time (i.e., not affected by irrelevant features)

e Recall irrelevant features can be harmful.

e LASSO is close, but it works under some assumptions only, and only for the linear model.

https://www.stat.cmu.edu/~ryantibs/statml/lectures/sparsity.pdf 14



LASSO prefers sparse solutions: intuition

» argmin [[Xw —y[|7 + Allwll;

e Constrained optimization form: arg min || Xw — y||5 for some R,
w:l|wll1=Rj

15



How LASSO are often used in practice

Treat A as a hyperparameter

let A ={1073,107%,...}
For A € A:
* Run LASSO(A) on § = obtain w’
* By « {i:w] # 0}
* Train OLS on S but only use features in B, obtain w;

Use validation set to choose w € {w;: 1 € A}

16



Probabilistic point of view

* So far, we motivated OLS from the ERM principle.

* Statisticians would have described it differently!
* Probabilistic model on data:

X ~ Dy

X € R4
Y | X ~ N(XTW*,O'Z)
W= O M TL pLX= X, Y= ye) |
L T Y=t XX T PO,
argWoX 3 L .

maximum likelihood estimation (MLE)
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Beyond linearity

« Introduce nonlinear mapping with basis functions ¢: R% —» R®
e ¢(x) = (x? x,1): 2" order polynomial
e dp(x) = (x%,x%71, ..., 1): d-th order polynomial (= degree d)

* Higher order => strictly larger class of predictors
F =1{h: h(x) =(w,¢p(x)), forsomew € Rd'}

18



Feature embedding trick

Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.81e+08(+/- 5.42e+08)
~ Model ~ Model — Model
~ Tue function ~ True function ~ Tue function

e Samples e Samples e Samples

 overfitting vs underfitting

* bias-variance tradeoff. err(f‘) _ [err(f)—]rrgér% err(f*)] + min err(f*)

freF

from https://datascience.foundation/sciencewhitepaper/underfitting-and-overfitting-in-machine-learning
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Convexity

This is why setting the gradient = 0 gives optimal solutions

20



Motivation

 What if the loss function is not quadratic?

* E.g., classification: x € R%,y € {—1,1}

* |ogistic loss: £(w; x,y) = log(1 + e‘y'WTx)

Logistic loss

—f(x) = log(1+exp(-X))

21



Convex sets

* [Def] Aset C is convex if
Yu,v € C,Va € [0,1], we haveau + (1 —a)v € C

)

( o) CX).

convex combination

22



Convex function: intuition

* Informally,

* A convex function is one that looks “convex” from the bottom
* A convex function has only one “valley”

~ S WV

Convex functions Nonconvex function

« Why setting Vf(w) = 0 for convex f yields a minimizer?

/ —

23



Convex function: definitions

 [Def] Let C be a convex set. A function f: C — R is convex if
Vu,v € C and Va € [0,1],
flau+ (1 —a)v) <af(wW)+ 1 —-a)f(v)

 [Def] concave: change ‘<’ to ‘>’

* (Thm) f: C — R is convex if and only if its epigraph epi(f) =
{(x,t): f(x) < t}isaconvexset

* Convex functions are easy to optimize
* Imagine “dropping a ball on the surface”

RHS +
LHS, 1

24



2

Exercise: show h(x) = x“ is convex

* Goal: show (av + (1 — a)u)? < av?+ (1 — a)u? foralla € [0,1]
sSa?v’+20—-a)auww+ (1 —a)’u?> —av’ —(1—-a)u* <0
proof. ((1—a)>—(1—a))u?+2(1—a)auv + (a? — a)v’
= (a? — a)u? + 2(1 — a)auv + (a? — a)v?
= a(l—a)(—u®+ 2uv —v?)

=a(l—a) - (-Du-v)* <0

25



Properties

e (a) -fis concave & fis convex

7
* (b) linear functions are both convex and concave @
* (c) Norms are convex (norms: see Zico Kolter note 3.5) ,

e Letf, g be convex.
* (d) max{f(x), g(x)} is convex ><

* (e) f(x) + g(x) is convex

.
-~

* (f) if g is nondecreasing, then h(x) := g(f(x)) is convex =>e.g., h(w) = ||w||?

1 >0

* (g) fis concave, g is convex and nonincreasing, then h(x) := g(f(x)) is convex. e.g h(x) = log(1+x)’ =

* (h) convexity is invariant under affine maps:
if f is convex, then f(Ax + b) is also convex where 4 € R™4,p € R"
(this includes linear maps, of course)

26



(Thm) the OLS objective function is convex.

F(w) = Z(WTXL' — ¥i)?
i=1

* Is fi(w) = (WTx; — y;)? convex?

* Yes, itis h(g(w)), a composition of h(z) = z* and affine mapping g(w) =w'x; — y;

* |Is the RLS objective F;(w) == Y™, (wTx; — y;)? + A||w]|? convex? What about the LASSO objective?
=1

27



Check convexity: an oftentimes more convenient criterion

* (Prop) Let a function f: R — IR be twice differentiable on a convexset C € R
Then, fisconvexe f'"(x) =2 0,Vx € C

o [Def] A € R¥*4 js positive semi-definite (PSD) < xTAx > 0 Vx € R

L l4
H X — X e
() . > p—— - _—
notation: 4 = 0 AU TS u
* analogue of nonnegative coefficient in 1d. L)
A2 O. A_}: 0

* (prop) Suppose A is symmetric. Then, A is PSD < eigval;(4) = 0, Vi

* (Prop) Let a function f: R% — R be twice continuously differentiable or a convex set C € R¢.

Then, f is convex © V4 f(x) is PSD, Vx € C

28



Showing h(x) = x

e C=R

* Forallx € C:
 h'(x) = 2x

c h"(x) =220

2

IS convex: an alternative proof

29



So we know it’s convex. But why derivative = 07

e (Thm) [Optimality condition]

Let f be convex and differentiable, B be a convex set. Then, 3 W \7'.{,,@2
w* €argminf(w) s.t. WEB & 7 Flud w’
w .

w* EB y
vweB, VfwHT(w-w*)=>0

* Furthermore, if B = R? (unconstrained), then the RHS above reduces /ﬁ\
toVf(w*) =0 ‘

e Q: does this tell us something about existence of an optimal solution?

U
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Next lecture (9/21)

* Linear classification; regularized loss minimization formulations
* Support Vector Machines (SVMs)

* Assigned Reading: CIML Section 7.7
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