## CSC 580 Principles of Machine Learning

# 06 Linear models and convexity 

## Chicheng Zhang

Department of Computer Science

## Overview

- Linearity - recall perceptron
- $h(x)=\operatorname{sign}(\langle w, x\rangle+b)$ - classification
- $h(x)=\langle w, x\rangle+b$ - regression
- Why linear?
- Simplicity
- Interpretability

- Computational efficiency
- First, linear regression (this lecture)


## Regression example



Figure 2: Old Faithful geyser in Yellowstone National Park

## Eruption prediction

- Example: When will "Old Faithful" geyser erupt?
- Predict "time between eruptions"
- Old Faithful Geyser Data


$$
h(x)=b \text { (no feature) }
$$

- Mean on past 136 observations: $\hat{\mu}=70.7941$ minutes
- So predict $\hat{y}=\hat{\mu}=70.7941$

- Mean squared error on next 136 observations: 187.1894
- Square root: 13.6817 minutes

$$
\begin{aligned}
& \text { mean squared error: } \\
& \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}
\end{aligned}
$$

## Eruption prediction

- Henry Woodward observed that "time between eruptions" seems related to "duration of latest eruption"


$$
h(x)=w \cdot x+b
$$

- Use "duration of latest eruption" as feature $x$
- Can use $x$ to predict time until next eruption, $y$



## Linear regression in dimension >= 2



## Formal intro to regression

- Recall classification: $\mathrm{Y}=0$ or 1 ; use $0 / 1$ loss $\ell(y, \hat{y})=I(y \neq \hat{y})$
- Regression: $Y \in \mathbb{R}$; which loss?
- Square loss $\ell(y, \hat{y})=(y-\hat{y})^{2}$
- Absolute loss $\ell(y, \hat{y})=|y-\hat{y}|$

- Terminology
- expected loss (= risk) $R_{D}(h)=\mathbb{E}_{D}\left[(y-h(x))^{2}\right]$
(cf. true error rate)
- empirical loss (= emp. risk) $\hat{R}_{n}(h)=\mathbb{E}_{S}\left[(y-h(x))^{2}\right]=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\left(x_{i}\right)\right)^{2}$ (cf. training error rate)
- regression function $h^{*}(x)=\operatorname{argmin}_{\hat{y}} \mathbb{E}\left[(Y-\hat{y})^{2} \mid X=x\right]$
(cf. Bayes classifier)
- Bayes risk $R_{D}\left(h^{*}\right)$


## Linear regression

- The linear class of functions
$\mathcal{H}=\left\{h: h(x)=\langle w, x\rangle+b\right.$, for some $\left.w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\} \quad$ (nonhomogeneous linear class)
$\mathcal{H}=\left\{h: h(x)=\langle w, x\rangle\right.$, for some $\left.w \in \mathbb{R}^{d}\right\}$ (homogeneous linear class)
- Parametric model class
- Cf. nonparametric models
- it does not mean 'no parameters'
- it means the number of parameters are not fixed before training
- examples: decision trees, $\mathrm{k}-\mathrm{NN}$



## Training linear regression models

- The Empirical Risk Minimization (ERM) principle:
- The train data $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- $\widehat{w}=\arg \min _{w \in \mathbb{R}^{d}}\left[\hat{R}_{n}\left(h_{w}\right):=\frac{1}{n} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}\right]$
- An optimization problem

Objective function


- How to solve it?


## Solving the optimization problem

$$
\widehat{w}=\arg \min _{\mathrm{w} \in \mathbb{R}^{d}}\left[F(w):=\sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}\right]
$$

- Optimality condition: $\widehat{w}$ needs to satisfy $\nabla F(\widehat{w})=0$,
where $\nabla F(w):=\left(\nabla_{1} F(w), \ldots, \nabla_{\mathrm{d}} F(w)\right)=\left(\frac{\partial F}{\partial w_{1}}, \frac{\partial F}{\partial w_{2}}, \ldots, \frac{\partial F}{\partial w_{d}}\right)$

$$
w \longrightarrow\left(w^{\top} x-y\right) \longrightarrow\left(w^{\top} x-y\right)^{2}
$$

- $\nabla_{j}\left(w^{\top} x-y\right)^{2}=\frac{\partial\left(w^{\top} x-y\right)^{2}}{\partial w_{j}}=2\left(w^{\top} x-y\right) \cdot \frac{\partial\left(w^{\top} x-y\right)}{\partial w_{j}}=2\left(w^{\top} x-y\right) x_{j} \Rightarrow \nabla\left(w^{\top} x-y\right)^{2}=2\left(w^{\top} x-y\right) x$
- $\nabla F(w)=\sum_{i=1}^{n} 2\left(w^{\top} x_{i}-y_{i}\right) x_{i}=0$
$\Rightarrow \sum_{i=1}^{n} x_{i} x_{i}^{\top} w=\sum_{i=1}^{n} y_{i} x_{i}$
$\Rightarrow w=V^{-1} c$ where $c=\sum_{i=1}^{n} y_{i} x_{i}, V=\sum_{i=1}^{n} x_{i} x_{i}^{\top}$
- One issue? When does that happen?


## Same derivation with matrix notations

$$
\widehat{w}=\arg \min _{w \in \mathbb{R}^{d}} F(w):=\|X w-y\|_{2}^{2}
$$

- $F(w)=f(g(w))$, where $g(w)=X w-y, f(v)=\|v\|_{2}^{2}$
- Chain rule of differentiation:

$$
w \xrightarrow{g} v \xrightarrow{f} F
$$

$\frac{\partial F}{\partial w}=\frac{\partial F}{\partial v} \cdot \frac{\partial v}{\partial w}$, where $\frac{\partial u}{\partial z}=\frac{\partial}{\partial z}\left(\begin{array}{c}u_{1} \\ \cdots \\ u_{n}\end{array}\right)=\left(\begin{array}{ccc}\frac{\partial}{\partial z_{1}} u_{1} & \cdots & \frac{\partial}{\partial z_{m}} u_{1} \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial z_{1}} u_{n} & \cdots & \frac{\partial}{\partial z_{m}} u_{n}\end{array}\right)$ is the Jacobian of $u$ wrt $z$

- $\frac{\partial F}{\partial v}=2 v, \frac{\partial v}{\partial w}=X$
- $\nabla F(w)^{\top}=\frac{\partial F}{\partial w}=2 v \cdot X=2(X w-y)^{\top} X=2\left(w^{\top} V-c^{\top}\right)=2(V w-c)^{\top}$


## The issue of inversion

- The inverse may not exist! when does it happen?
- The instances $\left\{x_{1}, \ldots, x_{n}\right\}$ do not span the full $\mathbb{R}^{d}$ space
(Zico Kolter's linear algebra review p12; link in lec00 slides)
- Guaranteed to happen if $n<d$
- In this case, turns out there are infinitely many $w^{\prime}$ s that satisfies $X^{\top} X w=X^{\top} y$ (thus an optimal solution)
- Among those $w^{\prime}$ s, the one with the minimum norm can be found by replacing the inverse with Penrose-Moore pseudo inverse (function pinv() in numpy):

$$
w=\left(X^{\top} X\right)^{+} X^{\top} Y=X^{+} Y
$$

## Regularized linear regression

- Ordinary least squares (OLS) vs Regularized least squares (RLS, ridge regression)
- $\arg \min _{w}\|X w-y\|_{2}^{2}+\lambda\|w\|_{2}^{2}$

- Why regularize?
- Control the complexity of predictor
- Avoid overfitting


Kernel Regression on MNIST

- When does the regularization not help?
- Regression function is in the class \& there is no label noise



## Variations: LASSO

- LASSO: replaces $\lambda\|w\|_{2}^{2}$ with $\lambda\|w\|_{1}$
- variable selection property => most coefficients are 0
- Under some mathematical assumptions \& the right $\lambda$ value, researchers have shown that features with zero coefficients are truly irrelevant features.
- Prediction error is almost as good as an "oracle" linear regression that is run with only those relevant features.
- no more closed form => iterative methods
- A big open problem in ML: being able to throw in all the possible features in, but still perform as good as knowing the truly relevant features ahead of time (i.e., not affected by irrelevant features)
- Recall irrelevant features can be harmful.
- LASSO is close, but it works under some assumptions only, and only for the linear model.


## LASSO prefers sparse solutions: intuition

- $\arg \min _{w}\|X w-y\|_{2}^{2}+\lambda\|w\|_{1}$
- Constrained optimization form: arg min $\|X w-y\|_{2}^{2}$ for some $R_{\lambda}$

$$
w:\|w\|_{1} \leq R_{\lambda}
$$




## How LASSO are often used in practice

- Treat $\lambda$ as a hyperparameter
- Let $\Lambda=\left\{10^{-3}, 10^{-2}, \ldots\right\}$
- For $\lambda \in \Lambda$ :
- Run $\operatorname{LASSO}(\lambda)$ on $S \Longrightarrow$ obtain $w^{\prime}$
- $B_{\lambda} \leftarrow\left\{i: w_{i}^{\prime} \neq 0\right\}$
- Train OLS on $S$ but only use features in $B_{\lambda}$, obtain $\widehat{w}_{\lambda}$
- Use validation set to choose $\widehat{w} \in\left\{\widehat{w}_{\lambda}: \lambda \in \Lambda\right\}$


## Probabilistic point of view

- So far, we motivated OLS from the ERM principle.
- Statisticians would have described it differently!
- Probabilistic model on data:

$$
\begin{aligned}
X & \sim \mathcal{D}_{X} \\
Y \mid X & \sim N\left(X^{\top} w^{*}, \sigma^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\hat{\omega} & =\arg \max _{\max } \prod_{i=1}^{n} p_{1}\left(X=x_{i}, Y=y_{i}\right) \\
& =, \quad \pi_{i=1}^{n} p_{i}\left(Y=y_{i} \mid X=x_{i}\right) \cdot \pi_{i} \quad P\left(X=x_{i}\right)
\end{aligned}
$$



$=\arg \max _{\omega}-\sum_{i=1}^{n}\left(y_{i}-w^{\top} x_{i}\right)^{2}$
$=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-w^{\top} x_{i}\right)^{2} \quad \Rightarrow$ ERM!!

## Beyond linearity

- Introduce nonlinear mapping with basis functions $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$ :
- $\phi(x)=\left(x^{2}, x, 1\right): 2^{\text {nd }}$ order polynomial
- $\phi(x)=\left(x^{d}, x^{d-1}, \ldots, 1\right)$ : d-th order polynomial (= degree d$)$
- Higher order => strictly larger class of predictors

$$
\mathcal{F}=\left\{h: \quad h(x)=\langle w, \phi(x)\rangle, \text { for some } w \in \mathbb{R}^{d^{\prime}}\right\}
$$

## Feature embedding trick



Degree 15
$M S E=1.81 \mathrm{e}+08(+/-5.42 \mathrm{e}+08)$


- overfitting vs underfitting
- bias-variance tradeoff.

$$
\operatorname{err}(\hat{f})=\left[\operatorname{err}(\hat{f})-\min _{f^{*} \in \mathcal{F}} \operatorname{err}\left(f^{*}\right)\right]+\min _{f^{*} \in \mathcal{F}} \operatorname{err}\left(f^{*}\right)
$$

## Convexity

This is why setting the gradient $=0$ gives optimal solutions

## Motivation

- What if the loss function is not quadratic?
- E.g., classification: $x \in \mathbb{R}^{d}, y \in\{-1,1\}$
- logistic loss: $\ell(w ; x, y)=\log \left(1+e^{-y \cdot w^{\top} x}\right)$


Convex sets

- [Def] $A$ set $C$ is convex if
$\forall u, v \in C, \forall \alpha \in[0,1]$, we have $\alpha u+(1-\alpha) v \in C$
convex combination



## Convex function: intuition

- Informally,
- A convex function is one that looks "convex" from the bottom
- A convex function has only one "valley"


Convex functions


Nonconvex function

- Why setting $\nabla f(w)=0$ for convex $f$ yields a minimizer?



## Convex function: definitions

- [Def] Let $C$ be a convex set. A function $f: C \rightarrow \mathbb{R}$ is convex if $\forall u, v \in C$ and $\forall \alpha \in[0,1]$,

$$
f(\alpha u+(1-\alpha) v) \leq \alpha f(u)+(1-\alpha) f(v)
$$

- [Def] concave: change ' $\leq$ ' to ' $\geq$ '

- (Thm) $f: C \rightarrow \mathbb{R}$ is convex if and only if its epigraph epi $(f)=$ $\{(x, t): f(x) \leq t\}$ is a convex set
- Convex functions are easy to optimize

- Imagine "dropping a ball on the surface"


## Exercise: show $h(x)=x^{2}$ is convex

- Goal: show $(\alpha v+(1-\alpha) u)^{2} \leq \alpha v^{2}+(1-\alpha) u^{2}$ for all $\alpha \in[0,1]$

$$
\begin{aligned}
& \Leftrightarrow \alpha^{2} v^{2}+2(1-\alpha) \alpha u v+(1-\alpha)^{2} u^{2}-\alpha v^{2}-(1-\alpha) u^{2} \leq 0 \\
& \text { proof. } \quad\left((1-\alpha)^{2}-(1-\alpha)\right) u^{2}+2(1-\alpha) \alpha u v+\left(\alpha^{2}-\alpha\right) v^{2} \\
& =\left(\alpha^{2}-\alpha\right) u^{2}+2(1-\alpha) \alpha u v+\left(\alpha^{2}-\alpha\right) v^{2} \\
& =\alpha(1-\alpha)\left(-u^{2}+2 u v-v^{2}\right) \\
& =\alpha(1-\alpha) \cdot(-1)(u-v)^{2} \leq 0
\end{aligned}
$$

## Properties

- (a) - $f$ is concave $\Leftrightarrow f$ is convex
- (b) linear functions are both convex and concave
- (c) Norms are convex (norms: see Zico Kolter note 3.5)

- Let $\mathrm{f}, \mathrm{g}$ be convex.
- (d) $\max \{f(x), g(x)\}$ is convex
- (e) $f(x)+g(x)$ is convex
- (f) if g is nondecreasing, then $\mathrm{h}(\mathrm{x}):=\mathrm{g}(\mathrm{f}(\mathrm{x}))$ is convex $\quad=>$ e.g., $h(w)=\|w\|^{2}$
- $(\mathrm{g}) \mathrm{f}$ is concave, g is convex and nonincreasing, then $\mathrm{h}(\mathrm{x}):=\mathrm{g}(\mathrm{f}(\mathrm{x}))$ is convex. e. $\mathrm{g} h(x)=\frac{1}{\log (1+x)}, x \geq 0$
- (h) convexity is invariant under affine maps:
if f is convex, then $f(A x+b)$ is also convex where $A \in \mathbb{R}^{n \times d}, b \in \mathbb{R}^{n}$ (this includes linear maps, of course)


## (Thm) the OLS objective function is convex.

$$
F(w):=\sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}
$$

- Is $f_{i}(w)=\left(w^{\top} x_{i}-y_{i}\right)^{2}$ convex?
- Yes, it is $h(g(w))$, a composition of $h(z)=z^{2}$ and affine mapping $g(w)=w^{\top} x_{i}-y_{i}$
- Is the RLS objective $F_{\lambda}(w):=\sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}+\lambda\|w\|^{2}$ convex? What about the LASSO objective?


## Check convexity: an oftentimes more convenient criterion

- (Prop) Let a function $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable on a convex set $C \subseteq \mathbb{R}$ Then, $f$ is convex $\Leftrightarrow f^{\prime \prime}(x) \geq 0, \forall x \in C$
- [Def] $A \in \mathbb{R}^{d \times d}$ is positive semi-definite (PSD) $\Leftrightarrow x^{\top} A x \geq 0 \forall x \in \mathbb{R}^{d}$
- notation: $A \succcurlyeq 0$
- analogue of nonnegative coefficient in 1d.
- (prop) Suppose $A$ is symmetric. Then, $A$ is PSD $\Leftrightarrow \operatorname{eigval~}_{i}(A) \geq 0, \forall i$

- (Prop) Let a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be twice continuously differentiable on a convex set $C \subseteq \mathbb{R}^{d}$. Then, $f$ is convex $\Leftrightarrow \nabla^{2} f(x)$ is PSD, $\forall x \in C$

Showing $h(x)=x^{2}$ is convex: an alternative proof

- $C=\mathbb{R}$
- For all $x \in C$ :
- $h^{\prime}(x)=2 x$
- $h^{\prime \prime}(x)=2 \geq 0$


## So we know it's convex. But why derivative $=0$ ?

- (Thm) [Optimality condition]

Let $f$ be convex and differentiable, $B$ be a convex set. Then, $w^{*} \in \arg \min _{w} f(w)$ s.t. $\quad w \in B \quad \Leftrightarrow$

$$
\left\{\begin{array}{cc} 
& w^{*} \in B \\
\forall w \in B, & \nabla f\left(w^{*}\right)^{\top}\left(w-w^{*}\right) \geq 0
\end{array}\right.
$$



- Furthermore, if $B=\mathbb{R}^{d}$ (unconstrained), then the RHS above reduces to $\nabla f\left(w^{*}\right)=0$
- Q: does this tell us something about existence of an optimal solution?


## Next lecture (9/21)

- Linear classification; regularized loss minimization formulations
- Support Vector Machines (SVMs)
- Assigned Reading: CIML Section 7.7

