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Overview

• Linearity – recall perceptron

• ℎ 𝑥 = sign( 𝑤, 𝑥 + 𝑏) – classification

• ℎ 𝑥 = 𝑤, 𝑥 + 𝑏 - regression

• Why linear?

• Simplicity

• Interpretability

• Computational efficiency

• First, linear regression (this lecture)
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Regression example 
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Eruption prediction
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mean squared error:

1

𝑛


𝑖=1

𝑛

𝑌𝑖 − 𝑌𝑖
2

ℎ 𝑥 = 𝑏 (no feature)



Eruption prediction
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ℎ 𝑥 = 𝑤 ⋅ 𝑥 + 𝑏



Linear regression in dimension >= 2
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ℎ 𝑥 = 𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2 + 𝑏 = 𝑤, 𝑥 + 𝑏



Formal intro to regression

• Recall classification: Y = 0 or 1; use 0/1 loss ℓ 𝑦, ො𝑦 = 𝐼 𝑦 ≠ ො𝑦

• Regression: 𝑌 ∈ ℝ; which loss?

• Square loss ℓ 𝑦, ො𝑦 = 𝑦 − ො𝑦 2

• Absolute loss ℓ 𝑦, ො𝑦 = |𝑦 − ො𝑦|

• Terminology

• expected loss (= risk) 𝑅𝐷(ℎ) = 𝔼𝐷 𝑦 − ℎ 𝑥
2

• empirical loss (= emp. risk) 𝑅𝑛 ℎ = 𝔼𝑆 𝑦 − ℎ 𝑥
2
=

1

𝑛
σ𝑖=1
𝑛 𝑦𝑖 − ℎ 𝑥𝑖

2

• regression function ℎ∗ 𝑥 = argmin ො𝑦𝔼[ 𝑌 − ො𝑦 2 ∣ 𝑋 = 𝑥]

• Bayes risk 𝑅𝐷(ℎ
∗)
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(cf. Bayes classifier)

(cf. true error rate)

(cf. training error rate)

(cf. Bayes error)



Linear regression

• The linear class of functions

ℋ = {ℎ: ℎ 𝑥 = 𝑤, 𝑥 + 𝑏, for some 𝑤 ∈ ℝ𝑑 , 𝑏 ∈ ℝ} (nonhomogeneous linear class)

ℋ = {ℎ: ℎ 𝑥 = 𝑤, 𝑥 , for some 𝑤 ∈ ℝ𝑑} (homogeneous linear class)

• Parametric model class

• Cf. nonparametric models

• it does not mean ’no parameters’

• it means the number of parameters are not fixed before training

• examples: decision trees, k-NN
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Training linear regression models

• The Empirical Risk Minimization (ERM) principle:

• The train data 𝑆 = { 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛)}

• ෝ𝑤 = arg min
𝑤∈ℝ𝑑

𝑅𝑛 ℎ𝑤 ≔
1

𝑛
σ𝑖=1
𝑛 𝑤⊤𝑥𝑖 − 𝑦𝑖

2

• An optimization problem

• How to solve it?
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Objective function



Solving the optimization problem

ෝ𝑤 = arg min
w∈ℝ𝑑

𝐹(𝑤) ≔

𝑖=1

𝑛

𝑤⊤𝑥𝑖 − 𝑦𝑖
2

• Optimality condition: ෝ𝑤 needs to satisfy ∇𝐹 ෝ𝑤 = 0,

where ∇𝐹 𝑤 ≔ ∇1𝐹 𝑤 , … , ∇d𝐹 𝑤 =
𝜕𝐹

𝜕𝑤1
,
𝜕𝐹

𝜕𝑤2
, … ,

𝜕𝐹

𝜕𝑤𝑑

• ∇𝑗 𝑤
⊤𝑥 − 𝑦 2 =

𝜕 𝑤⊤𝑥 −𝑦
2

𝜕𝑤𝑗
= 2 𝑤⊤𝑥 − 𝑦 ⋅

𝜕 𝑤⊤𝑥 −𝑦

𝜕𝑤𝑗
= 2 𝑤⊤𝑥 − 𝑦 𝑥𝑗 ⟹ ∇ 𝑤⊤𝑥 − 𝑦 2= 2 𝑤⊤𝑥 − 𝑦 𝑥

• ∇𝐹 𝑤 = σ𝑖=1
𝑛 2 𝑤⊤𝑥𝑖 − 𝑦𝑖 𝑥𝑖 = 0

⟹ σ𝑖=1
𝑛 𝑥𝑖𝑥𝑖

⊤𝑤 = σ𝑖=1
𝑛 𝑦𝑖𝑥𝑖

⟹𝑤 = 𝑉−1𝑐 where 𝑐 = σ𝑖=1
𝑛 𝑦𝑖𝑥𝑖, 𝑉 = σ𝑖=1

𝑛 𝑥𝑖𝑥𝑖
⊤

• One issue? When does that happen?
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𝑤 𝑤⊤𝑥 − 𝑦 𝑤⊤𝑥 − 𝑦 2



Same derivation with matrix notations

ෝ𝑤 = arg min
𝑤∈ℝ𝑑

𝐹(𝑤) ≔ ‖𝑋𝑤 − 𝑦‖2
2

• 𝐹 𝑤 = 𝑓 𝑔 𝑤 , where 𝑔 𝑤 = 𝑋𝑤 − 𝑦, 𝑓 𝑣 = 𝑣 2
2

• Chain rule of differentiation: 

𝜕𝐹

𝜕𝑤
=

𝜕𝐹

𝜕𝑣
⋅
𝜕𝑣

𝜕𝑤
, where 

𝜕𝑢

𝜕𝑧
=

𝜕

𝜕𝑧

𝑢1
…
𝑢𝑛

=

𝜕

𝜕𝑧1
𝑢1 ⋯

𝜕

𝜕𝑧𝑚
𝑢1

⋮ ⋱ ⋮
𝜕

𝜕𝑧1
𝑢𝑛 ⋯

𝜕

𝜕𝑧𝑚
𝑢𝑛

is the Jacobian of 𝑢 wrt 𝑧

•
𝜕𝐹

𝜕𝑣
= 2𝑣, 

𝜕𝑣

𝜕𝑤
= 𝑋

• ∇𝐹 𝑤 ⊤ =
𝜕𝐹

𝜕𝑤
= 2𝑣 ⋅ 𝑋 = 2 𝑋𝑤 − 𝑦 ⊤𝑋 = 2 𝑤⊤𝑉 − 𝑐⊤ = 2 𝑉 𝑤 − 𝑐 ⊤
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𝑤
𝑔

𝑣
𝑓

𝐹



The issue of inversion

• The inverse may not exist! when does it happen?

• The instances {𝑥1, … , 𝑥𝑛} do not span the full ℝ𝑑 space 

• Guaranteed to happen if 𝑛 < 𝑑

• In this case, turns out there are infinitely many 𝑤’s that satisfies 𝑋⊤𝑋𝑤 = 𝑋⊤𝑦 (thus an optimal 
solution)

• Among those 𝑤’s, the one with the minimum norm can be found by replacing the inverse with 
Penrose-Moore pseudo inverse (function pinv() in numpy):

𝑤 = 𝑋⊤𝑋 +𝑋⊤𝑌 = 𝑋+𝑌
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(Zico Kolter’s linear algebra review p12; 
link in lec00 slides)



Regularized linear regression

• Ordinary least squares (OLS) vs Regularized least squares (RLS, ridge 
regression)

• argmin
𝑤

𝑋𝑤 − 𝑦 2
2 + 𝜆 𝑤 2

2

• Why regularize?

• Control the complexity of predictor

• Avoid overfitting

• When does the regularization not help?

• Regression function is in the class & there is no label noise
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https://tyliang.github.io/Tengyuan.Liang/pdf/slides-Duke.pdf



Variations: LASSO

• LASSO: replaces 𝜆 𝑤 2
2 with 𝜆 𝑤 1

• variable selection property => most coefficients are 0

• Under some mathematical assumptions & the right 𝜆 value, researchers have shown that 
features with zero coefficients are truly irrelevant features.

• Prediction error is almost as good as an “oracle” linear regression that is run with only those 
relevant features.

• no more closed form => iterative methods

• A big open problem in ML: being able to throw in all the possible features in, but still perform as 
good as knowing the truly relevant features ahead of time (i.e., not affected by irrelevant features)

• Recall irrelevant features can be harmful.

• LASSO is close, but it works under some assumptions only, and only for the linear model.

14https://www.stat.cmu.edu/~ryantibs/statml/lectures/sparsity.pdf



LASSO prefers sparse solutions: intuition

• argmin
𝑤

𝑋𝑤 − 𝑦 2
2 + 𝜆 𝑤 1

• Constrained optimization form: arg min
𝑤: 𝑤 1≤𝑅𝜆

𝑋𝑤 − 𝑦 2
2 for some 𝑅𝜆
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How LASSO are often used in practice

• Treat 𝜆 as a hyperparameter 

• Let Λ = {10−3, 10−2, … }

• For 𝜆 ∈ Λ:

• Run LASSO(𝜆) on 𝑆⟹ obtain 𝑤’

• 𝐵𝜆 ← {𝑖: 𝑤𝑖
′ ≠ 0}

• Train OLS on 𝑆 but only use features in 𝐵𝜆, obtain ෝ𝑤𝜆

• Use validation set to choose ෝ𝑤 ∈ {ෝ𝑤𝜆: 𝜆 ∈ Λ}
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Probabilistic point of view

• So far, we motivated OLS from the ERM principle.

• Statisticians would have described it differently!

• Probabilistic model on data: 

17

𝑋 ∼ 𝒟𝒳

𝑌 | 𝑋 ~ 𝑁(𝑋⊤𝑤∗, 𝜎2)
𝑋 ∈ ℝ𝑑

maximum likelihood estimation (MLE)



Beyond linearity

• Introduce nonlinear mapping with basis functions 𝜙:ℝ𝑑 → ℝ𝑑′:

• 𝜙 𝑥 = 𝑥2, 𝑥, 1 : 2nd order polynomial

• 𝜙 𝑥 = (𝑥𝑑 , 𝑥𝑑−1, … , 1): d-th order polynomial (= degree d)

• Higher order => strictly larger class of predictors

ℱ = {ℎ: ℎ 𝑥 = 𝑤,𝜙(𝑥) , for some 𝑤 ∈ ℝ𝑑′}
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Feature embedding trick

• overfitting vs underfitting

• bias-variance tradeoff.

19from https://datascience.foundation/sciencewhitepaper/underfitting-and-overfitting-in-machine-learning

err( መ𝑓)   =   [err( መ𝑓) – min
𝑓∗∈ℱ

err(𝑓∗)]    +   min
𝑓∗∈ℱ

err(𝑓∗) 



Convexity
This is why setting the gradient = 0 gives optimal solutions
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Motivation

• What if the loss function is not quadratic?

• E.g., classification: 𝑥 ∈ ℝ𝑑 , 𝑦 ∈ {−1,1}

• logistic loss: ℓ 𝑤; 𝑥, 𝑦 = log(1 + 𝑒−𝑦⋅𝑤
⊤𝑥)
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Convex sets 

• [Def] A set 𝐶 is convex if
∀𝑢, 𝑣 ∈ 𝐶, ∀𝛼 ∈ [0,1], we have 𝛼𝑢 + 1 − 𝛼 𝑣 ∈ 𝐶

22

convex combination



Convex function: intuition

• Informally,

• A convex function is one that looks “convex” from the bottom

• A convex function has only one “valley”

• Why setting ∇𝑓 𝑤 = 0 for convex 𝑓 yields a minimizer?

23

Nonconvex functionConvex functions



Convex function: definitions

• [Def] Let 𝐶 be a convex set. A function 𝑓: 𝐶 → ℝ is convex if 
∀𝑢, 𝑣 ∈ 𝐶 and ∀𝛼 ∈ 0,1 ,

𝑓 𝛼𝑢 + 1 − 𝛼 𝑣 ≤ 𝛼𝑓 𝑢 + 1 − 𝛼 𝑓 𝑣

• [Def] concave: change ‘≤’ to ‘≥’

• (Thm) 𝑓: 𝐶 → ℝ is convex if and only if its epigraph epi 𝑓 =
{ 𝑥, 𝑡 : 𝑓 𝑥 ≤ 𝑡} is a convex set

• Convex functions are easy to optimize

• Imagine “dropping a ball on the surface”
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Exercise: show ℎ 𝑥 = 𝑥2 is convex

• Goal:  show 𝛼𝑣 + 1 − 𝛼 𝑢 2 ≤ 𝛼𝑣2 + 1− 𝛼 𝑢2 for all 𝛼 ∈ [0,1]

⇔ 𝛼2𝑣2 + 2 1 − 𝛼 𝛼𝑢𝑣 + 1 − 𝛼 2𝑢2 − 𝛼𝑣2 − 1− 𝛼 𝑢2 ≤ 0

proof. 1 − 𝛼 2 − 1 − 𝛼 𝑢2 + 2 1 − 𝛼 𝛼𝑢𝑣 + 𝛼2 − 𝛼 𝑣2

= 𝛼2 − 𝛼 𝑢2 + 2 1 − 𝛼 𝛼𝑢𝑣 + 𝛼2 − 𝛼 𝑣2

= 𝛼(1 − 𝛼)(−𝑢2 + 2𝑢𝑣 − 𝑣2)

= 𝛼 1 − 𝛼 ⋅ −1 𝑢 − 𝑣 2 ≤ 0
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Properties

• (a) -f is concave ⇔ f is convex

• (b) linear functions are both convex and concave

• (c) Norms are convex (norms: see Zico Kolter note 3.5)

• Let f, g be convex.

• (d) max{f(x), g(x)} is convex

• (e) f(x) + g(x) is convex

• (f) if g is nondecreasing, then h(x) := g(f(x)) is convex     => e.g., ℎ 𝑤 = 𝑤 2

• (g) f is concave, g is convex and nonincreasing, then h(x) := g(f(x)) is convex. e.g ℎ 𝑥 =
1

log(1+𝑥)
, 𝑥 ≥ 0

• (h) convexity is invariant under affine maps:
if f is convex, then 𝑓 𝐴𝑥 + 𝑏 is also convex where 𝐴 ∈ ℝ𝑛×𝑑 , 𝑏 ∈ ℝ𝑛

(this includes linear maps, of course)
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(Thm) the OLS objective function is convex.

𝐹(𝑤) ≔

𝑖=1

𝑛

𝑤⊤𝑥𝑖 − 𝑦𝑖
2

• Is 𝑓𝑖 𝑤 = 𝑤⊤𝑥𝑖 − 𝑦𝑖
2 convex?

• Yes, it is ℎ(𝑔(𝑤)), a composition of ℎ 𝑧 = 𝑧2 and affine mapping 𝑔(𝑤) = 𝑤⊤𝑥𝑖 − 𝑦𝑖

• Is the RLS objective 𝐹𝜆(𝑤) ≔ σ𝑖=1
𝑛 𝑤⊤𝑥𝑖 − 𝑦𝑖

2 + 𝜆‖ ‖w 2 convex? What about the LASSO objective?
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Check convexity: an oftentimes more convenient criterion

• (Prop) Let a function 𝑓:ℝ → ℝ be twice differentiable on a convex set 𝐶 ⊆ ℝ
Then,                𝑓 is convex ⇔𝑓′′ 𝑥 ≥ 0, ∀𝑥 ∈ 𝐶

• [Def] 𝐴 ∈ ℝ𝑑×𝑑 is positive semi-definite (PSD) ⇔ 𝑥⊤𝐴𝑥 ≥ 0 ∀𝑥 ∈ ℝ𝑑

• notation: 𝐴 ≽ 0

• analogue of nonnegative coefficient in 1d.

• (prop) Suppose 𝐴 is symmetric. Then, 𝐴 is PSD ⇔eigval𝑖 𝐴 ≥ 0,∀𝑖

• (Prop) Let a function 𝑓:ℝ𝑑 → ℝ be twice continuously differentiable on a convex set 𝐶 ⊆ ℝ𝑑.

Then, 𝑓 is convex ⇔∇2𝑓 𝑥 is PSD, ∀𝑥 ∈ 𝐶
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Showing ℎ 𝑥 = 𝑥2 is convex: an alternative proof

• 𝐶 = ℝ

• For all 𝑥 ∈ 𝐶: 

• ℎ′ 𝑥 = 2𝑥

• ℎ′′ 𝑥 = 2 ≥ 0
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So we know it’s convex. But why derivative = 0?

• (Thm) [Optimality condition]
Let 𝑓 be convex and differentiable, 𝐵 be a convex set. Then, 

𝑤∗ ∈ argmin
𝑤

𝑓 𝑤 s. t. w ∈ 𝐵 ⇔

ቊ
𝑤∗ ∈ 𝐵

∀𝑤 ∈ 𝐵, ∇𝑓 𝑤∗ ⊤ 𝑤 −𝑤∗ ≥ 0

• Furthermore, if 𝐵 = ℝ𝑑 (unconstrained), then the RHS above reduces 
to ∇𝑓 𝑤∗ = 0

• Q: does this tell us something about existence of an optimal solution?
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Next lecture (9/21)

• Linear classification; regularized loss minimization formulations

• Support Vector Machines (SVMs)

• Assigned Reading: CIML Section 7.7
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