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The role of feature in supervised learning



The importance of good feature representation

* Pixel representation:
* represent an image as a w*h*3 dimensional vector

* treat all coordinates in the same role

* throw away all locality information in the image

* Shape representation:

* represent a colored image with a w*h black-white image
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* Bag-of-words representation:



Deep neural
networks learn
hierarchical feature
representations
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https://computervisionblog.wordpress.com/2016/01/23/distributed-code-or-grandmother-cells-insights-from-convolutional-neural-networks/



Irrelevant and redundant features

Movement of

people in the

* |rrelevant features : » ; ‘ background
* yisindependent of f P N e s Reflections

» mee=C__ ' >
Robot

* y = Road walkability, f = duck activities in the pond

Ducks gliding

f = - — - onthepond

-y Ripples

= {

éature & label

5.

jarg 4
‘f.)

* If #features is large and #examples is small = spurious correlation between some f

* Redundant features
* Given f3, y is (nearly) independent of f,

* Learning decision trees implicitly handles these two issues

* How about nearest neighbors / Perceptron?

https://www.microsoft.com/en-us/research/blog/ppe-a-fast-and-provably-efficient-rl-algorithm-for-exogenous-noise/ ¢



Feature pruning

* Removing features that are not very useful for prediction
e E.g. text classification with bag-of-word representation, remove words that appear <= K docs
* E.g. digit classification, remove pixels with low variance

1 N 2 1N 2
br = gZi=iXif  0f = ui=1(Xir—Hy)

Low variance

High variance



Feature normalization

Centering:
* Xip =Xip—fy P pp =0

Variance scaling:
* xir=xp5/0F > (0p)* =1

Absolute scaling
. x{f = x; r/7r, where rr = max |x; r| = range of x{f ‘sin[-1,+1]
) ) l ) )

Same transformation applied to both training set and test data

Xi

[B]|

Aside: example normalization: x; = sometimes also can be applied




Feature transformations

Combining features into a “meta-feature”, e.g. X0 * Xexcellent
» Useful for e.g. Perceptron learners

In general, (i) mega-features if allowed to combine k features

Computationally cheaper alternative:
* train a decision tree, use the meta-feature induced by leaves

Logarithmic feature transformation
. x]i < log, (xr) (“excellent” word count: 1->2 vs. 10->11

* xp < logy(xp +1)

o

1

no
4+ L —
%,
- ‘~ “excellent”
o =
,_i,.-
T2
A
‘' EAEE | EEE
- EENE | EEE
" EEE | mEm
‘A EE | EEE
‘' EaEE | EEE
- mEwE | EEEm
—+— 1 I
0 1



Classification metrics beyond error rate
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Confusion matrix

* E.g. activity recognition

e P(y=skip|y=jump) =11%

jack
jump
pjump
run
actual class
side
skip
walk
rvavel

nave2

task: activity recognition from video

Ll 1 i L

L]

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
= 0 0 0 1 ] 0 0
= 0 0 0
- 0 0 0
= D 0 0
- 0 0 0
= 0 0 0
- 0 0 0
b 0 0 0 0
be:lnd ja::l: jurrnp p;ulmp rulln sHI:e slzip W;IK wa':fe1 wave2

predicted class

figure from vision.jhu.edu
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Class imbalance problem

N . A ,
E.g., 5% pos, 95% negative.
Baseline: always predict majority class ‘ | - ]

Implicit assumption:
misclassifying positive example is more costly than misclassifying negative examples

Standard ML algorithms aims at finding h that minimizes unweighted training error

> 1(hGx) # 1)
i=1

2 alternatives:
* Duplicate the minority class to make the positive and negative class balanced
repeat every positive example w times, wherew = P(y = —1)/P(y = +1)
* Importance weighted classification: minimize Y.;=; w; I(h(x;) # y;),
where w; = 1 wheny; = -1, w; = wwheny; = +1

12



New measures of classification performance

actual class
* True positive rate (TPR)
5 _ ~— = —~
=B PU=+Ly=+1) positive negative
P P(y=+1) ’
(aka recall, sensitivity) positive true positives false positives
. TN (TP) (FP)
* True negative rate (TNR) = — _ Type | error
N predicted <
(specificity) class neqati false negatives | true negatives
. FP gative (FN) (TN)
* False positive rate (FPR) = N \ Type Il error
. FN P=TP+FN N=FP+TN
* False negative rate (FNR) = -
Applications:
- ~ e Search engine: precision & recall
e Precision = L P(y_+1’y_+1), P — called = TP + FP * Cancer classification: FNR vs. FPR

P—called = P(H=+1)
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Adjusting TP, FP, TN, FN via thresholding

* Decision values (classification scores)

g
positive

negative

.99 +

98 + predicted <
72 - class

51

24 +

 hy(x) =1(c(x) =t)

* Choice of threshold t:
et=0:h;=—-1=TPR=0, FPR=0
*t=0:h,=4+1=TPR=1, FPR=1

\

actual class

.

/—_ wmyw
positive

. .
negative

true positives
(TP)

false positives
(FP)

false negatives
(FN)

true negatives
(TN)

P=TP +FN

N =FP +FN
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ROC curve

A Receiver Operating Characteristic (ROC) curve plots the TP-rate vs. the FP-rate
as a threshold on the confidence of an instance being positive is varied

ideal point Different methods can work - !
better in different parts of .98 +
(TP/P) ot Alg 1 ROC space. 72 +
o 1.
*é ’ 5 51 -
o 24 -
= Alg 2
3
Q ‘\ expected curve for
e random guessing
I: |
1.0

False positive rate
(FP/N)



ROC curve

. confidence correct
* Conceptually, consider every instance _positive class
possible threshold, put a dot for Ex9 .99 +
each, and connect them. Ex7 .98 TPR=2/5FPR=05 + 1.0+
Ex1 .72 - 3
Ex2 .70 + 92
* Actually, just need to care about Ex6 .65 TPRE4BFPREIS + 8
when the ‘correct class’ changes Ex10 .51 -8
. : Ex3 .39 =
* results in staircase shape, but ® |

-+
N
'C)w

di N il h ExS5 .24 1pr=5/5FPR=3/5
iagonal line can still happen. Ex4 11

- False positive rate
Ex8 .01 TPR=5/5FPR=5/5 -

* A popular alternative: just plot

when going from + to -.
(what’s shown here) ‘/ ) /



confidence correct

. Etance positive class
Calculating ROC curve FUNE :
Ex7 98 TPR= 2/5, FPR=0/5 +
Ex1 .72 -
O Q) (m) (m) Ex2 .70 +
let (y » € ) y »C )) be the test-set instances sorted according to predicted confidence Ex6 65 TPR=4/5FPR=15  +
¢ that each instance is positive Ex10 .51 -
let num_neg, num_pos be the number of negative/positive instances in the test set Ex3 .39 -
TP =0, FP=0
last TP =0
fori=1tom

// find thresholds where there is a pos instance on high side, neg instance on low side
if (i>1)and (c?=cD)and (y” ==neg)and (TP > last_TP)
Q_—-— FPR = FP / num_neg, TPR = TP/ num_pos
output (FPR, TPR) coordinate
last TP = TP
if y() == pos
++7TP
else
++FP
FPR = FP [/ num_neg, TPR = TP / num_pos
output (FPR, TPR) coordinate

17



ROC curve examples

task: recognizing genomic units called operons

100% . . T
80% |
2
L
o 60%
2
@
=]
L 40%
o
2
=
o
20% Bayes net
naive Bayes --------
._ . ] qu .............
0% 20% 40% 60% 80% 100%

False Positive Rate

figure from Bockhorst et al., Bioinformatics 2003

True positive rate

0.8

0.6

0.2

e — NetChop C-term 3.0
/ — TAP + ProteaSMM-i
e —— ProteaSMM-i
P s
I ! I A I .
0.4 0.6 0.8 ]

False positive rate

from Wikipedia
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Area under ROC curve

The boss says “could you just give me one number?”

AUC: Area Under the ROC curve:

2(x_,—1)eS_ L(xy,+1)es, [(€(Xx4)>c(x))
N_-N,

AUC(c): =

c(x): decision value of x

S_: negative examples, S, : positive examples

Idea: the slice corresponds to x_ has area

1 Z(x+,+1)es+ I(c(x4)>c(x-))
N_ A

Interpretation: “how well does ¢ distinguish between + and -?”

A0
| |
ROC Curve IC'Jllcemratiun fAUC=0,913

1 [ |

=
[=r]

True positive rate {Sensitivity)
=2 =2 =2 =
M2 [ -+ o

=

=

0 nz 04 05 03
Falze p‘s'tiue rate {1 - Specificity)
[ |
L

Ncgatives Positives

0 01 02 03 04 05 06 0.7 0.8 0.9
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Precision-Recall (PR) curve

A precision/recall curve plots the precision vs. recall (TP-rate) as a
threshold on the confidence of an instance being positive is varied

ideal point

4 /
default precision

._— determined by the
fraction of instances
that are positive

1.0

precision

Py=+119=+41) |

oOv

recall (TPR) 1.
P(H=+11y=+1)

* This is usually a trade-off curve: t | = recall T, precision |

.99 +
.98 +
72 +
51 -
24 -

20



PR-curve example

Precision

predicting patient risk for VTE

q - iy
@ _
=
@ _
a
< |
[
o - Naive Bayes ! e tured
SVvM
ssseessss Filtered k—-NN
----- - C45
g | ——— Random Forest
I [ I | | 1
0.0 0.2 0.4 0.6 0.8 1.0
Recall

figure from Kawaler et al., Proc. of AMIA Annual Symosium, 2012 27



Summary of precision-recall

Reporting one number

Take the harmonic mean: F1 score

2

recall + precision

Fj_: 1:

(b
Emphasizes the smaller measure 0.2

* E.g.recall = 0.1, precision =09 = F; =0.18 uug
0.8

1.0h

Area under PR-curve is also a popular metric

.0
L0
L0
L0
L0
L0
L0

0.2
(300
.20
0.26
0.30
0.32
0.33

Recall: minimum of the two <= harmonic mean <= geometric mean <= arithmetic mean

o4 06 o8 1.0
000 000D 000 0.00

026 030 032 033
0.40 048 053 057
0.48

0.60
0.57

053

Table 5.2: Table of f-measures when

varying precision and recall values.
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How to plot ROC/PR curve when training set is small?

e k-fold CV:
* Obtain k curves and plot them all

—
—|
|
|
|
|
|--.._-
|
~
I
-

’ — Fold 1 AUC=0.8870
— Fold 2 AUC=0.8324
— Fold 3 AUC=0.8320
0.5 H — Fold 4 AUC=0.8685
— Fold 5 AUC=0.8523
-  Overall AUC=0.8542

0.0 0.2 0.4 0.6 0.8 1.0
Recall
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Next lecture (9/14)

* General model performance evaluation & comparison: hypothesis testing, bootstrapped confidence
intervals

* Linear models revisited

* Assigned reading: CIML Section 5.7, Sections 7.1-7.3

24



Hypothesis testing and Confidence Interval



Motivation: evaluating & comparing ML models

Setting 1:
* Your ML model f has test set error = 6.9%
* How confident are we to conclude that f has generalization error < 7%?

Setting 2:
* Your ML model f has test set error = 6.9%
* Gabe’s ML model g has test set error = 6.8%
* How confident are we to conclude that g has smaller generalization error than that of f?

Intuition: test set size matters

These questions can be answered rigorously using hypothesis testing and confidence interval

Disclaimer: we only focus on the key ideas (standard stats courses spend >=5 lectures on this)

26



Confidence interval (Cl): definition

Given distribution family Dg: 6 € ©
Sample S = (X4, ..., X;;) drawn iid from distribution Dg

A mapping I is said to be a (1 — a)-confidence interval construction for 6, if
PSNDg(H elS)=1-«a

A 50% confidence interval construction

for the mean parameter yin D, = N(u, 1)

N — — —
O WO ~NOOOEWN—=2OO©ONOORAWN =

27



Cl construction

e A standard recipe:
e Construct an estimator for 8 based on S -- call it O
e Let I(S) == [O5 — w, O + w], where w is chosen such that for all 8,
P5~D3(0 €[0s—wbs+w])=1—a

* Sometimes choose I(S) = [O5 — wy, O + wg] with different w;, wg’s

* Important example: confidence interval for normal mean
* D, =N,1),S =Xy, ... Xn) ~ D}

* Define [ig =% r X

 fis =~ N(0,)

n
* How to choose w such that P(|iis —u| <w)=>1-—a?

lowyer
lirmit

Lpper
lirnit:

28



Cl for normal mean (cont’d)

fs (0

* How to choose w such that P(|iis —u| <w) =>1-—a?

[oiver Hpper
lirmit lirnit

=

Note: Z = +/n (fis — u) ~ N(0,1)
Suffices to find z, suchthat P(|Z| < z,) 21 —a,and letw =

BN

253 106 -1 o 1 186 253
— B —
| #¥—— o5 ——— |

| « 09% . |

Zg

fis +—

Zg

\/ﬁ)

Final (1 — a)-confidence interval construction for u: I(S) = [ﬁs

E.g. 95%-confidence interval for p: I(S) = [ﬁg - %;ﬁs + %

29



Cl for means of binary random variables (r.v.'s)

* Important example: estimating generalization error using error on test set §

With approximately C% probability, the true error lies in the interval

/ variance
errorg(h)(1 - errory(h))
n

errorg(h) =z, \/

where z. is a constant that depends on C (e.g. for 95% confidence, z- =1.96)

* Python code for computing z,

import scipy.stats as st

alpha = 0.05 // alpha =1-C s .
st.norm.ppf(1-alpha/2) // ppf: inverse of the Gaussian CDF ] : =
=> 1.959963984540054 N

— s ———————— |

99% v |30




Cl for means of binary r.v.'s (cont’d)

Binomial distnibution withn=15andp=0.2

D, = Ber(u), S = (Xy,...,Xp) ~ D} oas | —

Define [is = % D€

Central limit theorem: 010 —
n e — 005 —
7 — Vn(ds — u) = N(0,1) - —l_lﬁ?

0.15 —

Probability

- e =

T T 1T 1T T T
01 23 4567 8 98

X
Can define I(S) = [ﬁs + ““(1_“)2“]
yn
Issue: u is unknown
Implementable alternative: I1(S) = [ﬁs + “#S(i/_ﬁ“‘g)za . .: ! : ! .
-2.58 -1.896 -1 0 1 105 2.458

* Note: exact confidence interval possible, and the computational complexity is not
that high. (log(1/precision_level) evaluations of Binomial cdf)

31



Cl for means of general distributions, unknown variance

* Given Dy with mean parameter 8 with unknown variance ;Tpizrtfg‘gg-swts as st
2“(1 (X'_ﬁn)z st.t.ppf(1-alpha/2,df=2)
¢ 52 = “1n ‘1 = unbiased estimator of var(Dg) =>4.302652729911275
N 1 st.t.ppf(1-alpha/2,df=5)
 (Thm) Let X4, ..., X,,~N(u,0%), and fi,, = - r X => 2.5705818366147395
.an —u st.t.ppf(1-alpha/2,df=10)
VN — ~ student-t (mean 0, scale 1, degrees of freedom=n — 1) =>2.2281388519649385
O-Tl
~ st.t.ppf(1-alpha/2,df=30)
A~ On tg
* Cl: [,un T N ] 0.40 =>2.0422724563012373
n M i T i T
0.35¢ st.t.ppf(1-alpha/2,df=100)
030l => 1.9839715184496334
0.25}
Z0.20}
0.15}
0.10

0.05}
0.00




Cl for complex evaluation functions

* So far, each trial was one test point, and the score of interest takes explicit “average”
e each test pointisi.i.d., so it was “easy” to compute Cl’s

2

* What about other evaluation functions, e.g. F1 score? F =
recall ' + precision

e (1) k-fold split:

* 8¢, f =1, .., kareiid [ R B—
Sample from Uniform(S)
. ith repl t
(2) bootstrap S with rep aceﬁb/ - E|
//—\\ af—:_——— ;/ [

/,_9
=, |

| 7~
— 7 §F

R

T

33



empirical distribution of {X;, ..., X}, }:

BOOtSt 'a p p I N g Cl % i=1 Ox, where 8y is a dirac delta function

* Goal: estimate property h of D (:=h(D)) using confidence intervals, using sample S (e.g. h=F1 of model f)

I 0
* Idea: estimate the distribution of h(S) — h(D), denoted by R, : ’/:-\\ :
by bootstrapping (resampling) ' ‘K :
e perform n times of “sampling with replacement” from S R} 's pdf \
* repeat B times (e.g., B =~ 10%*) to obtain S, ..., Sg
* take v := empirical distribution of {h(S,) — h(S,)}5_,, as the ‘shape’ of R}, E ’
Va2 I V1—'a/2

* Assumption: h(S) — h(D) ~ Ry= emp_distribution[{h(Sb) — h(SO)}'g:l]

v’s histogram
Quantile interval: sort values and take top/bottom-quantiles (see next slide)

* With prob. = 1 — a, h(5) — h(D) € [vg/2,Vi—q/2] = I(S) = [A(S) + Vg2, h(S) + Vi_g /2]

34



Bootstrapping Cl: Implementation

* From bootstrapping, obtain {h(S,) — h(S)}5_

* How to calculate its empirical distribution’s quantiles?
e Sort them in increasing order; say v[0..(B-1)]

* Vi_q/2 = the top 0.025 (i.e., v[int(0.975*B)] )

* Vg2 = the bottom 0.025 (i.e., v[int(0.025*B)] )

Rp’sp

df

\
N
/ |

1

Va2 I Vi-a/2

V’s histogram

35



Hypothesis testing: motivation

* How to claim your new system A is better than existing one B

e Ex1: each test data point => take prediction from A & B => record correct/not

e Ex2: each evaluator => a random keyword is picked, and then both systems pick top 10 relevant documents
and rank them => the evaluator provides rating (1-5) for both lists.

Bvalator | 1| 2 | 3 | 4 | 5 | 6 | ..
A 5 2 2 5 4 2

B 4 1 1 4 3 1

36



One-sample hypothesis testing: definition

* Given Dg with parameter 6
Sample S = (X4, ..., X;;) drawn iid from distribution Dg

Equality test version:
* Null hypothesis Hy: 8 = 6,
* Alternative hypothesis H;: 0 # 6,

HO: H — 23
E.g. D, = Ber(u), Hy: u=7%; Hos 1 # 23
D, = N(u,1), Hy: u=23; 1°

Hypothesis test T: maps S to {0,1}
* T(S) = 0/1: accept / reject the null hypothesis H,
* Goal: minimize type-ll error Py (T(S) = 0)
s.t. type-l error Py (T(S) = 1) < a := significance level

Do not reject H,,

Reject Hy——

37



Two-sample hypothesis testing: definition

Given Dy with parameter 6

Samples Sy = (Xq,...,Xy) and Sy = (Y3, ..., ¥y) drawn iid from distribution Dg,, and Dy,
respectively

mean(tr)
=9.34

mean{No EP)

Equality test version: = .61
* Null hypothesis Hy: 8y = 0y
* Alternative hypothesis H,:0y # Oy

E.g. D, = Ber(u), Hy: ux = ty T

0 5 10 15

Similarly, design hypothesis tester T such that the two types of errors are controlled

1
20

38



Paired t-test

Sy = (X1, ..,Xy) and Sy = (Y3, ..., Y,) drawn iid from distribution Dg, = N(uy, o%) and Dg, = N(uy, 0y),
respectively

* Ho:uxy = py

* Hytpx # Uy

Let6; = X; =Y, foralli=1,..,n

= l n
Let §,, == nzi:l i Do not reject H,

Reject H, —J

Design hypothesis test T so that Py (TS =0)=21—a

Intuition: reasonable to reject if |Sn| is large

39



Paired t-test

 Under Hy, 6; ~N(0,0%),i =1, ...,n, where 6% = 67 + o

0.40
0.35¢

S 1 yn (5;-6 )2
e Recall Thm: Let 6, ..., 6,~N(0,0%2), and &, ==Y, 62 = 2= 0n 030]

n_l ﬂ0,25-

_ Z0.20¢

6 0.15f

/= \/ﬁa—n ~ student-t (mean O, scale 1, degrees of freedom=n — 1) 0.10

n 0.05}

0.00

e Let’s ask “under H,, what is a plausible range of values of Z with failure rate &« = 0.05?”
* Find the 0.025, 0.975-quantiles of Z => t 525, tg 975
* Hypothesis tester

T(S) =1(Z & [to.025 togrs)) =1 (\/ﬁg—z € [to.025) t0.975])

Do not reject H,

Reject H, J



Testing for non-paired data: Permutation test

» A/B testing: Say you are a Netflix ML engineer. Spare 5% of the traffic, and randomly split it into two
(2.5% each) and test recommendation system X vs Y. Each score is 0/1.

* You have now tested A 991 times (thus 991 scores) and B 1011 times (1011 scores).

* You hardly get “paired” data, when you deploy your system!

* Hy: the two system’s scores we saw came from the same distribution (=: null distribution)

* H;:the two system’s scores we saw came from different distributions

II)

* Intuition: calculate f(X)-f(Y) with some “discriminator” f, reject if its value is “"atypica

|I)

* How to define the set of "‘typical” values?

(bootstrap version also available, but permutation test is simpler) 41



Permutation test

Given: set of scores X (size N1), set of scores Y (size N2)
evaluation function f(), significance level a (default 0.05)

1. Estimate the null distribution:
Fori=1,..,B (e.g., B =10%)

e Concatenate XandY; call it Z (size N1+N2)
* Shuffle Z (e.g., Z = Z[numpy.random.permutation(N1+N2)])
e Split Zinto X’ (size N1) and Y’ (size N2) (e.g., Xp = Z[:N1]; Yp = C[N1:])
 Let §; = f(X') = f(Y’) (e.g., delta[i-1] = f(X’) - f(Y"))
2. Compute the quantiles
* Sort {6;} in decreasing order.

e U:=top % qguantile (e.g., delta[int((N1+N2)*alpha/2)])

e L:=bottom % quantile (e.g., delta[int((N1+N2)*(1-alpha/2))])
3. Does [L,U] contain f(X) — f(Y) ? Yes => passed the test; No => failed the test
Key idea: under Hy, f(X) — f(Y) should have the same distribution as the §;’s

[python code]

|
/
_—1
e

L

Va2 I Vi-a/2

V’s histogram

42




Hypothesis testing: additional remarks

* Confidence intervals can be used for hypothesis testing
e S =(Xy,...,X;) drawn iid from distribution D,
o HO: ,Ll —_ 0

0.025

d Hl: M ¢ 0 lcrver ¥ lLIJEn[:IIfr

limit

e Jisa (1 — a)-Cl construction for u => hypothesis test T(S) = I(0 & I(S)) has significance «

* p-value: given dataset S, and a family of hypothesis tests T,’s with different significance a’s
Sampling Distribution of

p = the smallest a with which you can still reject H Test Statistic (-score)

Assume Null Hypothesis is True

p-value
Probability of this area

p-value = 0.0062 -2.5

Our sample test statistic Expected test statistic (z-score)
(z-score)



Other materials

* Bootstrap test: https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-

statistics-spring-2014/readings/MIT18 05514 Reading24.pdf

* Permutation test: https://www.jwilber.me/permutationtest/

» STAT 566 lecture slides (at UA): https://www.math.arizona.edu/~jwatkins/stat566s20s.html
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https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/readings/MIT18_05S14_Reading24.pdf
https://www.jwilber.me/permutationtest/
https://www.math.arizona.edu/~jwatkins/stat566s20s.html

Next lecture (9/19)

* Linear models revisited: classification, regression, loss minimization formulations

* Assigned reading: CIML Sections 7.4-7.6
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