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The role of feature in supervised learning



The importance of good feature representation

• Pixel representation: 

• represent an image as a w*h*3 dimensional vector 

• treat all coordinates in the same role

• throw away all locality information in the image

• Shape representation: 

• represent a colored image with a w*h black-white image

• Bag-of-words representation: 
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https://www.rsipvision.com/exploring-deep-learning/
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https://computervisionblog.wordpress.com/2016/01/23/distributed-code-or-grandmother-cells-insights-from-convolutional-neural-networks/



Irrelevant and redundant features

• Irrelevant features

• y is independent of f

• y = Road walkability, f = duck activities in the pond

• If #features is large and #examples is small ⇒ spurious correlation between some feature & label

• Redundant features

• Given 𝑓1, 𝑦 is (nearly) independent of 𝑓2

• Learning decision trees implicitly handles these two issues

• How about nearest neighbors / Perceptron?

6https://www.microsoft.com/en-us/research/blog/ppe-a-fast-and-provably-efficient-rl-algorithm-for-exogenous-noise/



Feature pruning

• Removing features that are not very useful for prediction

• E.g. text classification with bag-of-word representation, remove words that appear <= K docs

• E.g. digit classification, remove pixels with low variance 

𝜇𝑓 =
1

𝑁
σ𝑖=1
𝑁 𝑥𝑖,𝑓 𝜎𝑓

2 =
1

𝑁
σ𝑖=1
𝑁 (𝑥𝑖,𝑓−𝜇𝑓)

2
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Feature normalization

• Centering:

• 𝑥𝑖,𝑓
′ = 𝑥𝑖,𝑓 − 𝜇𝑓 ⇒ 𝜇𝑓

′ = 0

• Variance scaling:

• 𝑥𝑖,𝑓
′ = 𝑥𝑖,𝑓/𝜎𝑓 ⇒ (𝜎𝑓

′)2 = 1

• Absolute scaling 

• 𝑥𝑖,𝑓
′ = 𝑥𝑖,𝑓/𝑟𝑓, where 𝑟𝑓 = max

𝑖
|𝑥𝑖,𝑓| ⇒ range of 𝑥𝑖,𝑓

′ ‘s in [-1,+1]

• Same transformation applied to both training set and test data

• Aside: example normalization: 𝑥𝑖
′ =

𝑥𝑖

‖𝑥𝑖‖
sometimes also can be applied
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Feature transformations

• Combining features into a “meta-feature”, e.g. 𝑥no ⋅ 𝑥excellent
• Useful for e.g. Perceptron learners

• In general, 𝑑
𝑘

mega-features if allowed to combine 𝑘 features

• Computationally cheaper alternative: 

• train a decision tree, use the meta-feature induced by leaves

• Logarithmic feature transformation

• 𝑥𝑓
′ ← log2(𝑥𝑓) (“excellent” word count: 1->2 vs. 10->11

• 𝑥𝑓
′ ← log2(𝑥𝑓 + 1)
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“excellent”

“no”
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Classification metrics beyond error rate



Confusion matrix

• E.g. activity recognition

• 𝑃 ො𝑦 = skip 𝑦 = jump = 11%
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Class imbalance problem

• E.g., 5% pos, 95% negative.

• Baseline: always predict majority class 

• Implicit assumption: 

misclassifying positive example is more costly than misclassifying negative examples

• Standard ML algorithms aims at finding ℎ that minimizes unweighted training error 



𝑖=1

𝑛

𝐼(ℎ 𝑥𝑖 ≠ 𝑦𝑖)

• 2 alternatives: 

• Duplicate the minority class to make the positive and negative class balanced 

repeat every positive example 𝑤 times, where 𝑤 = 𝑃(𝑦 = −1)/𝑃(𝑦 = +1)

• Importance weighted classification: minimize σ𝑖=1
𝑛 𝑤𝑖 𝐼(ℎ 𝑥𝑖 ≠ 𝑦𝑖), 

where 𝑤𝑖 = 1 when 𝑦𝑖 = −1, 𝑤𝑖 = 𝑤 when 𝑦𝑖 = +1
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New measures of classification performance
• True positive rate (TPR) 

= 
TP

P
=

𝑃( ො𝑦=+1,𝑦=+1)

𝑃(𝑦=+1)

(aka recall, sensitivity)

• True negative rate (TNR) = 
TN

N

(specificity)

• False positive rate (FPR) = 
FP

N

• False negative rate (FNR) = 
FN

P

• Precision = 
TP

P−𝑐alled
=

𝑃( ො𝑦=+1,𝑦=+1)

𝑃( ො𝑦=+1)
, P − 𝑐alled = TP + FP
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P = TP + FN N = FP + TN

Type I error

Type II error

Applications:
• Search engine: precision & recall
• Cancer classification: FNR vs. FPR



Adjusting TP, FP, TN, FN via thresholding

• Decision values (classification scores)

• ℎ𝑡 𝑥 = 𝐼(𝑐 𝑥 ≥ 𝑡)

• Choice of threshold 𝑡:

• 𝑡 = ∞: ℎ𝑡 ≡ −1⇒ TPR = 0,  FPR = 0

• 𝑡 = 0: ℎ𝑡 ≡ +1 ⇒ TPR = 1,  FPR = 1
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P = TP + FN N = FP + FN

𝒄(𝒙𝒊) 𝒚𝒊

.99 +

.98 +

.72 -

.51 -

.24 +



ROC curve

15

(FP/N)

(TP/P)

𝒄(𝒙𝒊) 𝒚𝒊

.99 +

.98 +

.72 +

.51 -

.24 -

(FP/N)



ROC curve
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• Conceptually, consider every 
possible threshold, put a dot for 
each, and connect them.

• Actually, just need to care about 
when the ‘correct class’ changes

• results in staircase shape, but 
diagonal line can still happen.

• A popular alternative: just plot 
when going from + to -.
(what’s shown here)



Calculating ROC curve
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ROC curve examples
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from Wikipedia



Area under ROC curve

• The boss says “could you just give me one number?”

• AUC: Area Under the ROC curve:

AUC 𝑐 :=
σ 𝑥−,−1 ∈𝑆−

σ 𝑥+,+1 ∈𝑆+
𝐼(𝑐 𝑥+ >𝑐 𝑥− )

𝑁−⋅𝑁+

• c(x): decision value of x

• 𝑆−: negative examples, 𝑆+: positive examples

• Idea: the slice corresponds to 𝑥− has area

1

𝑁−
⋅
σ 𝑥+,+1 ∈𝑆+

𝐼(𝑐 𝑥+ >𝑐 𝑥− )

𝑁+

• Interpretation: “how well does 𝑐 distinguish between + and -?”
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Precision-Recall (PR) curve 

• This is usually a trade-off curve: 𝑡 ↓⇒ recall ↑,  precision ↓
20

𝒄(𝒙𝒊) 𝒚𝒊

.99 +

.98 +

.72 +

.51 -

.24 -

𝑃(𝑦 = +1 ∣ ො𝑦 = +1)

𝑃( ො𝑦 = +1 ∣ 𝑦 = +1)



PR-curve example
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Summary of precision-recall

• Reporting one number

• Take the harmonic mean: F1 score

• Recall: minimum of the two <= harmonic mean <= geometric mean <= arithmetic mean

• Emphasizes the smaller measure

• E.g. recall = 0.1, precision = 0.9 ⇒ 𝐹1 = 0.18

• Area under PR-curve is also a popular metric 
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How to plot ROC/PR curve when training set is small?

• k-fold CV:

• Obtain k curves and plot them all

• Pooled prediction from k-fold CV.
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𝑐(𝑖)



Next lecture (9/14)

• General model performance evaluation & comparison: hypothesis testing, bootstrapped confidence 
intervals

• Linear models revisited

• Assigned reading: CIML Section 5.7, Sections 7.1-7.3 

24
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Hypothesis testing and Confidence Interval



Motivation: evaluating & comparing ML models

• Setting 1:

• Your ML model 𝑓 has test set error = 6.9%

• How confident are we to conclude that 𝑓 has generalization error < 7%?

• Setting 2:

• Your ML model 𝑓 has test set error = 6.9%

• Gabe’s ML model 𝑔 has test set error = 6.8%

• How confident are we to conclude that 𝑔 has smaller generalization error than that of 𝑓?

• Intuition: test set size matters 

• These questions can be answered rigorously using hypothesis testing and confidence interval

• Disclaimer: we only focus on the key ideas (standard stats courses spend >= 5 lectures on this)
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Confidence interval (CI): definition

• Given distribution family 𝐷𝜃: 𝜃 ∈ Θ

• Sample 𝑆 = (𝑋1, … , 𝑋𝑛) drawn iid from distribution 𝐷𝜃

• A mapping 𝐼 is said to be a (1 − 𝛼)-confidence interval construction for 𝜃, if 

𝑃𝑆∼𝐷𝜃
𝑛 𝜃 ∈ 𝐼 𝑆 ≥ 1 − 𝛼

• A 50% confidence interval construction

for the mean parameter 𝜇 in 𝐷𝜇 = 𝑁(𝜇, 1)
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CI construction

• A standard recipe:

• Construct an estimator for 𝜃 based on 𝑆 -- call it 𝜃𝑆

• Let 𝐼 𝑆 ≔ [ 𝜃𝑆 −𝑤, 𝜃𝑆 + 𝑤], where 𝑤 is chosen such that for all 𝜃,

𝑃𝑆∼𝐷𝜃
𝑛 𝜃 ∈ [ 𝜃𝑆 − 𝑤, 𝜃𝑆 +𝑤] ≥ 1 − 𝛼

• Sometimes choose 𝐼 𝑆 ≔ [ 𝜃𝑆 −𝑤𝐿 , 𝜃𝑆 +𝑤𝑅] with different 𝑤𝐿 , 𝑤𝑅’s

• Important example: confidence interval for normal mean

• 𝐷𝜇 = 𝑁 𝜇, 1 , 𝑆 = 𝑋1, … , 𝑋𝑛 ∼ 𝐷𝜇
𝑛

• Define ො𝜇𝑆 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖

• ො𝜇𝑆 − 𝜇 ∼ 𝑁 0,
1

𝑛

• How to choose 𝑤 such that 𝑃 ො𝜇𝑆 − 𝜇 ≤ 𝑤 ≥ 1 − 𝛼?
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CI for normal mean (cont’d)

• ො𝜇𝑆 − 𝜇 ∼ 𝑁 0,
1

𝑛

• How to choose 𝑤 such that 𝑃 ො𝜇𝑆 − 𝜇 ≤ 𝑤 ≥ 1 − 𝛼?

• Note: 𝑍 = 𝑛 ො𝜇𝑆 − 𝜇 ∼ 𝑁 0,1

• Suffices to find 𝑧𝛼 such that 𝑃 𝑍 ≤ 𝑧𝛼 ≥ 1 − 𝛼, and let 𝑤 =
𝑧𝛼

𝑛

• Final (1 − 𝛼)-confidence interval construction for 𝜇: 𝐼 𝑆 = ො𝜇𝑆 −
𝑧𝛼

𝑛
, ො𝜇𝑆 +

𝑧𝛼

𝑛

• E.g. 95%-confidence interval for 𝜇: 𝐼 𝑆 = ො𝜇𝑆 −
1.96

𝑛
, ො𝜇𝑆 +

1.96

𝑛
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CI for means of binary random variables (r.v.’s)

• Python code for computing 𝑧𝐶
import scipy.stats as st
alpha = 0.05
st.norm.ppf(1-alpha/2)
=> 1.959963984540054

30

// ppf: inverse of the Gaussian CDF

• Important example: estimating generalization error using error on test set 𝑆

variance

// alpha = 1-C



CI for means of binary r.v.’s (cont’d)

• 𝐷𝜇 = Ber(𝜇), 𝑆 = 𝑋1, … , 𝑋𝑛 ∼ 𝐷𝜇
𝑛

• Define ො𝜇𝑆 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖

• Central limit theorem:

𝑍 =
𝑛 ො𝜇𝑆 − 𝜇

𝜇(1 − 𝜇)
⇒ 𝑁 0, 1

• Can define 𝐼 𝑆 = Ƹ𝜇𝑆 ±
𝜇(1−𝜇)𝑧𝛼

𝑛

• Issue: 𝜇 is unknown 

• Implementable alternative: 𝐼 𝑆 = Ƹ𝜇𝑆 ±
ෝ𝜇𝑆(1−ෝ𝜇𝑆)𝑧𝛼

𝑛

• Note: exact confidence interval possible, and the computational complexity is not 
that high. (log(1/precision_level) evaluations of Binomial cdf)
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CI for means of general distributions, unknown variance

• Given 𝐷𝜃 with mean parameter 𝜃 with unknown variance

• ො𝜎𝑛
2 ≔

σ𝑖=1
𝑛 𝑋𝑖−ෝ𝜇𝑛

2

𝑛−1
⟹ unbiased estimator of var(𝐷𝜃)

• (Thm) Let 𝑋1, … , 𝑋𝑛~𝑁(𝜇, 𝜎
2), and ො𝜇𝑛 ≔

1

𝑛
σ𝑖=1
𝑛 𝑋𝑖

𝑛
ෝ𝜇𝑛−𝜇

ෝ𝜎𝑛
~ student-t (mean 0, scale 1, degrees of freedom = 𝑛 − 1)

• CI: ො𝜇𝑛 ±
ෝ𝜎𝑛⋅ 𝑡𝛼

𝑛
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import scipy.stats as st
alpha = 0.05
st.t.ppf(1-alpha/2,df=2)
=> 4.302652729911275

st.t.ppf(1-alpha/2,df=5)
=> 2.5705818366147395

st.t.ppf(1-alpha/2,df=10)
=> 2.2281388519649385

st.t.ppf(1-alpha/2,df=30)
=> 2.0422724563012373

st.t.ppf(1-alpha/2,df=100)
=> 1.9839715184496334



CI for complex evaluation functions

• So far, each trial was one test point, and the score of interest takes explicit “average”

• each test point is i.i.d., so it was “easy” to compute CI’s

• What about other evaluation functions, e.g. F1 score?

• (1) k-fold split:

• 𝑆𝑓, 𝑓 = 1,… , 𝑘 are iid

• (2) bootstrap

33

𝑆

Sample from Uniform(𝑆)
with replacement



Bootstrapping CI
• Goal: estimate property ℎ of 𝐷 (:=ℎ(𝐷)) using confidence intervals, using sample 𝑆 (e.g. ℎ=F1 of model 𝑓) 

• Idea: estimate the distribution of ℎ 𝑆 − ℎ(𝐷), denoted by 𝑅ℎ

by bootstrapping (resampling)

• perform 𝑛 times of “sampling with replacement” from 𝑆

• repeat 𝐵 times (e.g., B  ≈ 104) to obtain 𝑆1, … , 𝑆𝐵

• take 𝜈 ≔ empirical distribution of ℎ 𝑆𝑏 − ℎ 𝑆0 𝑏=1
𝐵 , as the ‘shape’ of 𝑅ℎ

• Assumption: ℎ 𝑆 − ℎ 𝐷 ∼ 𝑅ℎ≈ emp_distribution ℎ 𝑆𝑏 − ℎ 𝑆0 𝑏=1
𝐵

Quantile interval: sort values and take top/bottom-quantiles (see next slide)

• With prob. ≈ 1 − 𝛼, ℎ 𝑆 − ℎ 𝐷 ∈ [𝜈𝛼/2, 𝜈1−𝛼/2]⟹ 𝐼 𝑆 = [ℎ 𝑆 + 𝜈𝛼/2, ℎ 𝑆 + 𝜈1−𝛼/2]

34

empirical distribution of 𝑋1, … , 𝑋𝑛 :
1

𝑛
σ𝑖=1
𝑛 𝛿𝑋𝑖 where 𝛿𝑋 is a dirac delta function

𝜈𝛼/2

𝜈’s histogram 

𝑅ℎ’s pdf 

𝜈1−𝛼/2



Bootstrapping CI: Implementation

• From bootstrapping, obtain ℎ 𝑆𝑏 − ℎ(𝑆) 𝑏=1
𝐵

• How to calculate its empirical distribution’s quantiles?

• Sort them in increasing order; say v[0..(B-1)]

• 𝜈1−𝛼/2 ≔ the top 0.025 (i.e., v[int(0.975*B)] ) 

• 𝜈𝛼/2 ≔ the bottom 0.025 (i.e., v[int(0.025*B)] )

35

𝜈𝛼/2

𝜈’s histogram 

𝑅ℎ’s pdf 

𝜈1−𝛼/2



Hypothesis testing: motivation

• How to claim your new system A is better than existing one B

• Ex1: each test data point => take prediction from A & B => record correct/not

• Ex2: each evaluator => a random keyword is picked, and then both systems pick top 10 relevant documents 
and rank them => the evaluator provides rating (1-5) for both lists.

36

Evaluator 1 2 3 4 5 6 …

A 5 2 2 5 4 2 …

B 4 1 1 4 3 1 …



One-sample hypothesis testing: definition

• Given 𝐷𝜃 with parameter 𝜃

• Sample 𝑆 = (𝑋1, … , 𝑋𝑛) drawn iid from distribution 𝐷𝜃

• Equality test version:

• Null hypothesis 𝐻0: 𝜃 = 𝜃0
• Alternative hypothesis 𝐻1: 𝜃 ≠ 𝜃0

• E.g. 𝐷𝜇 = Ber(𝜇), 𝐻0: 𝜇=7%; 

𝐷𝜇 = 𝑁(𝜇, 1), 𝐻0: 𝜇=23; 

• Hypothesis test 𝑇: maps 𝑆 to {0,1}

• 𝑇 𝑆 = 0/1: accept / reject the null hypothesis 𝐻0
• Goal: minimize type-II error 𝑃𝐻1 𝑇 𝑆 = 0

s.t. type-I error 𝑃𝐻0 𝑇 𝑆 = 1 ≤ 𝛼 := significance level
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Two-sample hypothesis testing: definition

• Given 𝐷𝜃 with parameter 𝜃

• Samples 𝑆𝑋 = 𝑋1, … , 𝑋𝑛 and 𝑆𝑌 = 𝑌1, … , 𝑌𝑛 drawn iid from distribution 𝐷𝜃𝑋 and 𝐷𝜃𝑌 , 

respectively

• Equality test version:

• Null hypothesis 𝐻0: 𝜃𝑋 = 𝜃𝑌
• Alternative hypothesis 𝐻1:𝜃𝑋 ≠ 𝜃𝑌

• E.g. 𝐷𝜇 = Ber(𝜇), 𝐻0: 𝜇𝑋 = 𝜇𝑌

• Similarly, design hypothesis tester 𝑇 such that the two types of errors are controlled
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Paired t-test

• 𝑆𝑋 = 𝑋1, … , 𝑋𝑛 and 𝑆𝑋 = 𝑌1, … , 𝑌𝑛 drawn iid from distribution 𝐷𝜃𝑋 = 𝑁(𝜇𝑋, 𝜎𝑋
2) and 𝐷𝜃𝑌 = 𝑁(𝜇𝑌, 𝜎𝑌

2), 

respectively

• 𝐻0: 𝜇𝑋 = 𝜇𝑌
• 𝐻1: 𝜇𝑋 ≠ 𝜇𝑌

• Let 𝛿𝑖 ≔ 𝑋𝑖 − 𝑌𝑖, for all 𝑖 = 1,… , 𝑛

• Let ҧ𝛿𝑛 ≔
1

𝑛
σ𝑖=1
𝑛 𝛿𝑖

• Design hypothesis test 𝑇 so that 𝑃𝐻0 𝑇 𝑆 = 0 ≥ 1 − 𝛼

• Intuition: reasonable to reject if ҧ𝛿𝑛 is large
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Paired t-test

• Under 𝐻0, 𝛿𝑖 ~ 𝑁 0, 𝜎2 , 𝑖 = 1,… , 𝑛, where 𝜎2 = 𝜎𝑋
2 + 𝜎𝑌

2

• Recall Thm: Let 𝛿1, … , 𝛿𝑛~𝑁(0, 𝜎
2), and ҧ𝛿𝑛 ≔

1

𝑛
σ𝑖=1
𝑛 𝛿𝑖 , ො𝜎𝑛

2 ≔
σ𝑖=1
𝑛 𝛿𝑖−ഥ𝛿𝑛

2

𝑛−1

𝑍 = 𝑛
ഥ𝛿𝑛

ෝ𝜎𝑛
~ student-t (mean 0, scale 1, degrees of freedom = 𝑛 − 1)

• Let’s ask “under 𝐻0, what is a plausible range of values of 𝑍 with failure rate 𝛼 = 0.05?”

• Find the 0.025, 0.975-quantiles of 𝑍 => 𝑡0.025, 𝑡0.975
• Hypothesis tester

𝑇 𝑆 = 𝐼 𝑍 ∉ 𝑡0.025, 𝑡0.975 = 𝐼 𝑛
ത𝛿𝑛

ෝ𝜎𝑛
∉ 𝑡0.025, 𝑡0.975
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Testing for non-paired data: Permutation test

• A/B testing: Say you are a Netflix ML engineer. Spare 5% of the traffic, and randomly split it into two 
(2.5% each) and test recommendation system X vs Y. Each score is 0/1.

• You have now tested A 991 times (thus 991 scores) and B 1011 times (1011 scores).

• You hardly get “paired” data, when you deploy your system!

• 𝐻0: the two system’s scores we saw came from the same distribution (=: null distribution)

• 𝐻1: the two system’s scores we saw came from different distributions

• Intuition: calculate f(X)-f(Y) with some ``discriminator’’ f, reject if its value is ``atypical’’

• How to define the set of ``typical’’ values?

41(bootstrap version also available, but permutation test is simpler)



Permutation test
• Given: set of scores X (size N1), set of scores Y (size N2)

evaluation function f(), significance level 𝛼 (default 0.05)

• 1. Estimate the null distribution: 
For 𝑖 = 1,… , 𝐵 (e.g., 𝐵 = 104)

• Concatenate X and Y; call it Z (size N1+N2)

• Shuffle Z (e.g., Z = Z[numpy.random.permutation(N1+N2)])

• Split Z into X’ (size N1) and Y’ (size N2) (e.g., Xp = Z[:N1]; Yp = C[N1:])

• Let 𝛿𝑖 = f(X’) – f(Y’) (e.g., delta[i-1] = f(X’) - f(Y’))

• 2. Compute the quantiles

• Sort {𝛿𝑖} in decreasing order.

• U := top 
𝛼

2
quantile (e.g., delta[int((N1+N2)*alpha/2)])

• L := bottom 
𝛼

2
quantile (e.g., delta[int((N1+N2)*(1-alpha/2))])

• 3. Does [L,U] contain f(X) – f(Y) ? Yes => passed the test;  No => failed the test

• Key idea: under 𝐻0, f(X) – f(Y) should have the same distribution as the 𝛿𝑖’s
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[python code]

𝜈𝛼/2

𝜈’s histogram 

𝜈1−𝛼/2



Hypothesis testing: additional remarks

• Confidence intervals can be used for hypothesis testing 

• 𝑆 = (𝑋1, … , 𝑋𝑛) drawn iid from distribution 𝐷𝜇

• 𝐻0: 𝜇 = 0

• 𝐻1: 𝜇 ≠ 0

• 𝐼 is a (1 − 𝛼)-CI construction for 𝜇 => hypothesis test 𝑇 𝑆 = 𝐼(0 ∉ 𝐼(𝑆)) has significance 𝛼

• p-value: given dataset 𝑆, and a family of hypothesis tests 𝑇𝛼’s with different significance 𝛼’s

𝑝 = the smallest 𝛼 with which you can still reject 𝐻0
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Other materials

• Bootstrap test: https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-
statistics-spring-2014/readings/MIT18_05S14_Reading24.pdf

• Permutation test: https://www.jwilber.me/permutationtest/

• STAT 566 lecture slides (at UA): https://www.math.arizona.edu/~jwatkins/stat566s20s.html
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Next lecture (9/19)

• Linear models revisited: classification, regression, loss minimization formulations

• Assigned reading: CIML Sections 7.4-7.6
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