
CSC 580 Principles of Machine Learning

03 Nearest Neighbors

Chicheng Zhang

Department of Computer Science

1

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun

Motivation

• Example: given student course survey data, predict whether Alice likes Algorithms course

• A natural idea: find a student ``similar’’ to Alice & has taken Algorithm course before, say Jeremy

• If Jeremy likes Algorithms, then Alice is also likely to have the same preference.

• Or even better, find several similar students

2

𝑘-nearest neighbors (𝑘-NN): main concept

• Training set: 𝑆 = { 𝑥1, 𝑦1 , … , 𝑥𝑚, 𝑦𝑚 }

• Inductive bias: given test example 𝑥, its label should resemble the labels of nearby points

• Function

• input: 𝑥

• find the 𝑘 nearest points to 𝑥 from 𝑆; call their indices 𝑁(𝑥)

• output: the majority vote of {𝑦𝑖: 𝑖 ∈ 𝑁(𝑥)}

• For regression, the average.

3

k-NN classification example

4

decision boundary

Basics

• Oftentimes convenient to work with feature 𝑥 ∈ R𝑑

• Distances in R𝑑:

• (popular) Euclidean distance 𝑑2 𝑥, 𝑥′ = σ𝑓=1
𝑑 𝑥(𝑓) − 𝑥′ 𝑓

2

• Manhattan distance 𝑑1 𝑥, 𝑥′ = σ𝑓=1
𝑑 𝑥 𝑓 − 𝑥′ 𝑓

• If we shift a feature, would the distance change?

• What about scaling a feature?

• How to extract features as real values?

• Boolean features: {Y, N} -> {0,1}

• Categorical features: {Red, Blue, Green, Black}
• Convert to {1, 2, 3, 4}?

• Better one-hot encoding: (1,0,0,0), .., (0,0,0,1) (IsRed?/isGreen?/isBlue?/IsBlack?)

5

notation 𝑥(𝑓): 𝑥 = (𝑥 1 ,… , 𝑥(𝑑))

𝑘-NN classification: pseudocode

• Training is trivial: store the training set

• Test:

• Time complexity (assuming distance calculation takes 𝑂(𝑑) time)

• 𝑂 𝑚 𝑑 +𝑚 log 𝑚 + 𝑘 = 𝑂 𝑚 𝑑 + log 𝑚

• Faster nearest neighbor search: k-d trees, locality sensitive hashing

6

list

append to list

sort in first coordinate

Majority vote of {𝑦𝑖: 𝑖 ∈ 𝑁(𝑥)}

Variations

• Classification

• Recall the majority vote rule: ො𝑦 = arg max
𝑦∈{1,…,𝐶}

σ𝑖∈𝑁 𝑥 1{𝑦𝑖 = 𝑦}

• Soft weighting nearest neighbors: ො𝑦 = arg max
𝑦∈{1,…,𝐶}

σ𝑖=1
𝑚 𝑤𝑖 1{𝑦𝑖 = 𝑦},

where 𝑤𝑖 ∝ exp(−𝛽 𝑑(𝑥, 𝑥𝑖)), or ∝
1

1+𝑑 𝑥,𝑥𝑖
𝛽

• Class probability estimates

• ෠𝑃 𝑌 = 𝑦 𝑥 =
1

𝑘
σ𝑖∈𝑁 𝑥 1{𝑦𝑖 = 𝑦}

• Useful for “classification with rejection”

7

Feature issue 1: scaling

• Features having different scale can be problematic.

• Ex: ski vs. snowboard classification

• Solution: feature standardization (later in the course)

8

(cm)

(mm)

(cm)

(cm)

Feature issue 2: irrelevant features

9

• Recall: how did we deal with these in decision trees?
• Solution: feature selection (later in the course)

Test example

Test example

Hyperparameter tuning in 𝑘-NN

• Hyperparameter: 𝑘

• 𝑘 = 1:

• Training error = 0, overfitting

• 𝑘 = 𝑁:

• Output a constant (majority class) prediction, underfitting

• Can use hold-out validation to choose 𝑘

10

Hyperparameter tuning in 𝑘-NN

11

Comparison (feature 𝑥 ∈ R𝑑)

• Interpretability

• Sensitivity to
irrelevant features

• training time

• test time per example

12

Decision Tree 𝑘-NN

High Medium (example-based)

Low High

𝑂(#nodes ⋅ 𝑑 ⋅ (𝑚 +𝑚 log 𝑚))

𝑂(depth) 𝑂 𝑚 𝑑 + log 𝑚

0

≤ ෨𝑂(𝑑 𝑚2) (when no two points have the same feature)

Next lecture (9/7)

• Linear classification; the Perceptron algorithm

• Assigned reading: CIML Chap. 4

13

