03 Nearest Neighbors

Chicheng Zhang

Department of Computer Science

A THE UNIVERSITY
. OF ARIZONA

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun

Motivation

* Example: given student course survey data, predict whether Alice likes Algorithms course

* A natural idea: find a student "“similar”’ to Alice & has taken Algorithm course before, say Jeremy
* If Jeremy likes Algorithms, then Alice is also likely to have the same preference.
* Or even better, find several similar students

k-nearest neighbors (k-NN): main concept

* Training set: S = { (x1,y1), ., (Xm, Yin)}

* Inductive bias: given test example x, its label should resemble the labels of nearby points

 Function
* input: x

* find the k nearest points to x from S; call their indices N (x)

 output: the majority vote of {y;:i € N(x)}
* For regression, the average.

k-NN classification example

/ decision boundary

Basics

« Oftentimes convenient to work with feature x € R¢

* Distances in R%: notation x(f): x = (x(1), ..., x(d))

* (popular) Euclidean distance d, (x, x") = \/Z?zl(x(f) — x’(f))2
* Manhattan distance d,(x,x’) = Z?zllx(f) —x'(f)]

7
-
7
’ :>
4 .
A

---fé.\----

Y

* If we shift a feature, would the distance change?
* What about scaling a feature?

 How to extract features as real values?
e Boolean features: {Y, N} -> {0,1}
e Categorical features: {Red, Blue, Green, Black}
 Convertto({l, 2, 3, 4}?
* Better one-hot encoding: (1,0,0,0), .., (0,0,0,1) (IsRed?/isGreen?/isBlue?/IsBlack?)

k-NN classification: pseudocode

* Training is trivial: store the training set

Algorithm 3 KNN-Prep1icT(D, K, %)

list —— = S+ []
. forn=1to N do

* Test:

append to list =, S+« S @ (d(xy, &), n) /! store distance to training example n
+ end for
sort in first coordinate =—— 5 S < SORT(S) // put lowest-distance objects first
6 J <0
» fork =1to K do
s (dist,n) < S // n this is the kth closest data point
o YU+ yn // vote according to the label for the nth training point
o end for
Majority vote of {y;: i € N(x)}—— . return siGn(7) /lreturn +1if§ > 0and —1if§ <0

* Time complexity (assuming distance calculation takes O(d) time)
» O(md +mlogm +k)=0(m(d +logm))

e Faster nearest neighbor search: k-d trees, locality sensitive hashing

Variations

e Classification

* Recall the majority vote rule: y = arg EI{riax ZLEN(JC) 1{y; = y}

* Soft weighting nearest neighbors: y = arg Er{riax Zl 1 w; H{y;
y

where w; X eXp(—,B d(x' xi))' or 1+d(x,x;)P

e Class probability estimates

~ 1
* P(Y=ylx) =7 Yiene Hyi = ¥}

* Useful for “classification with rejection”

=y}, 4 \

Feature issue 1: scaling

* Features having different scale can be problematic.

* Ex: ski vs. snowboard classification

N S AR LE
N

i,
2

l'I.

-

I w‘:‘A“(V\ (cm)

e Solution: feature standardization (later in the course)

Feature issue 2: irrelevant features

here’s a case in which there consider the effect of an
is one relevant feature x; and a 1- irrelevant feature x, on distances and
NN rule classifies each instance nearest neighbors
correctl
y Test example
®
Py ®
X2
,,,,,,,, -
o
Test example
Py o
00000 —0 00§
X1 X1

* Recall: how did we deal with these in decision trees?
* Solution: feature selection (later in the course)

Hyperparameter tuning in k-NN

Hyperparameter: k

k=1:
* Training error = 0, overfitting

k=N:
e Output a constant (majority class) prediction, underfitting

Can use hold-out validation to choose k

10

Hyperparameter tuning in k-NN

K=1 K=5
45 . as -
L
[] ® o
4.0 1 - L 40 - L]
]] L [] . L
L L 1] L
3.5 1 08 @ 35 4 . .=-. ® .
L L ': - e &8 00 L 1]
o 29 a L 1] L L LB & 88 . L] L]
& a8 L] s 8 o op ™ o9
301 @ L B] L I *ee a0e L *® 304 @ [I] a8 [1 1] aoe L] L1]
o a8 Ssases & L [28 00000 @ L
ane 2 o8 e @ aned = el e @
a a a8 L ™ a8 8 ™
a8 L L] ad] ®
25 = L] =" L L] 25 1 : [] :l. ® L]
[]]
* 8 r - [BN
4'5 5. Ii.'ZI 5.5 E.:l‘.] 6.5 ?Il‘.] TIS ELI(] 4' 5 g 'u 5'5 E,Iu E-I 5 7 Iq] 7' 5
K=10 K =50
45 45
L L
L L
L L
40 . 40 .
L] L]
L] L L [] L
L]
L] [1] L L L 1] L
35 4 ase @ 35 - ase 9
e & 0 &0 *0 e & 0 80 L 1]
L L] a L] L a
& 88 [] &8 80 @ & 89 L &8 400 @
e 20 L o9 L N | L L 2]
304 @ a8 a8 [1T] ans L L 1] 3019 ® a @& a8 L 11] ase L ad
L 29 o000 @ [] o] a8 a00de @ []
[11] o aev L [L 11] o aed L L
] | BN I L] 2 a2 & B8 L
ae L] @ ae L] L
25 4 I aee L] ® 25 | BN aae L] L]
[]] []]
L 2 L e
[] L

Comparison (feature x € R%)

Interpretability

Sensitivity to
irrelevant features

training time

test time per example

Decision Tree k-NN
High Medium (example-based)
Low High

O(#nodes-d - (m + mlogm))

< 0(d m?) (when no two points have the same feature)

O(depth) 0O(m(d +logm))

&To
A

1,,... pEE
——
+— H 0 E HE N
LN | HEN

O
ﬂ_

S+ HjE|m
+— HjEjm
L L L

12

Next lecture (9/7)

* Linear classification; the Perceptron algorithm

e Assigned reading: CIML Chap. 4

13

