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Motivation

* Example: given student course survey data, predict whether Alice likes Algorithms course

* A natural idea: find a student "“similar”’ to Alice & has taken Algorithm course before, say Jeremy
* If Jeremy likes Algorithms, then Alice is also likely to have the same preference.
* Or even better, find several similar students



k-nearest neighbors (k-NN): main concept

* Training set: S = { (x1,y1 ), ., (Xm, Yin )}

* Inductive bias: given test example x, its label should resemble the labels of nearby points

 Function
* input: x

* find the k nearest points to x from S; call their indices N (x)

 output: the majority vote of {y;:i € N(x)}
* For regression, the average.




k-NN classification example

/ decision boundary




Basics

« Oftentimes convenient to work with feature x € R¢

* Distances in R%: notation x(f): x = (x(1), ..., x(d))

* (popular) Euclidean distance d, (x, x") = \/Z?zl(x(f) — x’(f))2
* Manhattan distance d,(x,x’) = Z?zllx(f) —x'(f)]
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* If we shift a feature, would the distance change?
* What about scaling a feature?

 How to extract features as real values?
e Boolean features: {Y, N} -> {0,1}
e Categorical features: {Red, Blue, Green, Black}
 Convertto({l, 2, 3, 4}?
* Better one-hot encoding: (1,0,0,0), .., (0,0,0,1) (IsRed?/isGreen?/isBlue?/IsBlack?)




k-NN classification: pseudocode

* Training is trivial: store the training set

Algorithm 3 KNN-Prep1icT(D, K, %)

list —— = S+ []
. forn=1to N do

* Test:

append to list =, S+« S @ (d(xy, &), n) /! store distance to training example n
+ end for
sort in first coordinate =—— 5 S < SORT(S) // put lowest-distance objects first
6 J <0
» fork =1to K do
s (dist,n) < S // n this is the kth closest data point
o YU+ yn // vote according to the label for the nth training point
o end for
Majority vote of {y;: i € N(x)}—— . return siGn(7) /lreturn +1if§ > 0and —1if§ <0

* Time complexity (assuming distance calculation takes O(d) time)
» O(md +mlogm +k)=0(m(d +logm))

e Faster nearest neighbor search: k-d trees, locality sensitive hashing



Variations

e Classification

* Recall the majority vote rule: y = arg EI{riax ZLEN(JC) 1{y; = y}

* Soft weighting nearest neighbors: y = arg Er{riax Zl 1 w; H{y;
y

where w; X eXp(—,B d(x' xi))' or 1+d(x,x;)P

e Class probability estimates

~ 1
* P(Y=ylx) =7 Yiene Hyi = ¥}

* Useful for “classification with rejection”

=y}, 4 \




Feature issue 1: scaling

* Features having different scale can be problematic.

* Ex: ski vs. snowboard classification
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e Solution: feature standardization (later in the course)




Feature issue 2: irrelevant features

here’s a case in which there consider the effect of an
is one relevant feature x; and a 1- irrelevant feature x, on distances and
NN rule classifies each instance nearest neighbors
correctl
y Test example
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* Recall: how did we deal with these in decision trees?
* Solution: feature selection (later in the course)



Hyperparameter tuning in k-NN

Hyperparameter: k

k=1:
* Training error = 0, overfitting

k=N:
e Output a constant (majority class) prediction, underfitting

Can use hold-out validation to choose k
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Hyperparameter tuning in k-NN
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Comparison (feature x € R%)

Interpretability

Sensitivity to
irrelevant features

training time

test time per example

Decision Tree k-NN
High Medium (example-based)
Low High

O(#nodes-d - (m + mlogm))

< 0(d m?) (when no two points have the same feature)

O(depth) 0O(m(d +logm))
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Next lecture (9/7)

* Linear classification; the Perceptron algorithm

e Assigned reading: CIML Chap. 4
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