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Motivation

* Machine learning is a general & useful framework

* Understand when machine learning will and will not work



Optimal classification with known D

* Suppose:
* Binary classification, 0-1 loss £(y, V) = I(y # ¥)
* D is known: for every (x,vy), Pp(x,y) can be computed

predictor f

* What is the f that minimizes Lp(f) = P(yx,)~p(y # f(x))?
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Generalization error: Ly (f) = Ey)~pl (¥ # f(x)) = Pixyy~p (v # f (X))
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Simple case: discrete domain X

Fatt)
y=-1 0.2 0.2 0.15
y = +1 0.1 0.3 0.05

Which classifier is better?
c (D =-1,f2)=-1,B3)=-1 = Ly(fy) =0.1+0.3+0.05
c L(D=-1,,2)=4+1£0B3)=-1 = Ly(f,) =0.1+02+0.05

e What is the best classifier?

e For any x, should choose y that has higher value of Pp(x,y)

c ffD=-1Lf"@2)=+1f@B)=-1



Bayes optimal classifier

e fgo(x) =argmaxPp(X =x,Y =y)=argmaxPp(Y =y |X =x),Vx€X
yEY yEY

* Theorem: fgo achieves the smallest error rate among all functions.
* Bayes error rate: Ly (fgo)
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Proof of theorem

» Step 1: consider accuracy:

* Ap(f) =1-Lp(f) =Pp(Y =f(X)) = Ex Po(X =x,Y = f(x))

* Suffices to show [, has the highest accuracy

* Step 2: comparison:

Ap(fpo) —Ap(f) = ZPD(X =x,Y =fBo(x)) _PD(X = X,

Y =f(x)) =0

fpo(x) = argmaxPp(X = x,Y = y)
YEY

e Remark: similar reasoning can be used to prove the theorem with continuous domain X (sum ->

integral)




Bayes error rate: alternative form

Lp(fep) = PD(Y :/:fBD(X))
=2xPp(Y # fep(x) | X = x) Pp(X = x)
=2x(1 = Pp(Y = fpp(x) | X = x)) Pp(X = x)
=2x(1—myaxPD(Y=y|X=x))PD(X=x)

=E[1—maxPD(Y=y|X)]
y

* Special case: binary classification

* Lp(fep) = 2x Pp (Y # fpp(x),X = x)
=), min(P,(Y =4+1,X =x),P,(Y =—-1,X = x))

plx|w2)Prob(w2)

p(x|w1)Prob(w1)




When is the Bayes error rate nonzero?

* Lp(fpo) = Xxmin(Pp(Y =+1,X =x),Pp(Y = —1,X = x))

* Limited feature representation

e feature noise

e Sensor failure
* Typo in reviews for sentiment classification

 label noise
e Crowdsourcing settings
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{Over,Under}-fitting

* Q: should I train a shallow or deep decision tree?

* Shallow tree: . Deep tree: 7§
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e Underfitting: have the opportunity to learn something but didn’t
e Overfitting: pay too much attention to idiosyncrasies to training data, and do not generalize well

* A model that neither overfits nor underfits is expected to do best



Unbiased model evaluation using test data

* Your boss says: | will allow your recommendation system to run on our website only if the error is <=
10%!

* How to prove it?

* |dea: reserve some data as test data for evaluating predictors

Test: 200
examples

N

predictor f

Training: 800 examples

1

¢ Ltest(f) — Z(x,y)EStestI(y a f(x))
e Law of large numbers = Ltest(f) — LD(f)

|Stest]
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Law of large numbers (LLN)

° Ltrain(f )

Suppose V4, ...,

_ 1
average v = ;27{;1 v; converges to E[v;] asn — oo

Useful in e.g. election poll

Foundations of statistics

Can we apply LLN to conclude that

A

|5tra1 |

v, are independent random variables that are identically distributed, the sample

BB-EB'B'B

Training: 800 examples

Test: 200
examples

Z(x Y)€Strain (y ia f(x)) _) LD(f) as [Strain| = 7

N

predictor f
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Never touch your test data

Test: 200
examples

N 7

predictor f

Training: 800 examples

. Iff depends on test examples, Ltest(f) may no longer estimate L (f) accurately

e E.g. indirect dependence:

e adaptive data analysis — choose a new learning algorithm based on seeing that the previous
algorithm produces an high-test-error model



Class Participation

* Asking review questions on Piazza (3pts)

* Every week, | will ask two of you to post questions (related to the past week’s material) on
Piazza

» 3 questions per student

e Other in-class / Piazza discussions (e.g. asking/answering in-class questions; Piazza Q&As)

e Extra credit: Catching errors in the CIML book
e Post on Piazza; we’ll discuss and confirm together, and hopefully send these back to the author

e 1pt for every error found
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Supervised learning setup

training data S E] \
airplane H.% oo /

l \
| |
automobile EII = | |
bird training | |
eal ‘ a supervised | : :

deer Fing > learning > | predictor f
dog % = ' algorithm A | : :
frog . | \ |
horse n I f(X) l
— : | |
oo B o\ -
ruck o T s g P | i
. . . . \ £(y, f (x)) ]
* Goal: design learning algorithm A such that its output f on \ /

W e e e - em am
iid training data S has low generalization error G

Generalization error: Ly (f) = E(xyy~p £y, f (X))
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Terminologies

* Model: the predictor f no yes
e Often from a model class F , Gke)  [@kenOtherSys7]

no yes

* e.g. F = {decision trees}, {linear classifiers}

imorning?| [likedOtherSys?|

‘

e Parameter: specifics of f

* E.g. for decision tree f: tree structure, questions in nodes, labels in leaves
* For linear classifier: linear coefficients

* Hyperparameter: specifics of learning algorithm A
* E.g. in DecisionTreeTrain, constrain to output tree of depth < h
* Tuning hyperparameters often results in {over, under}-fitting

un
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Hyperparameter tuning using validation set

E.g. in decision tree training, how to choose tree depth h € {1, ..., H}?

For each hyperparameter h € {1, ..., H}:
* Train Tree; using DecisionTreeTrain by constraining

the tree depth to be h

Choose one from Treey, ..., Treey

ldea 1: choose Treej, that minimizes training error

ldea 2: choose Tree;, that minimizes test error

ldea 3: further split training set to training set and validation set (development/hold-out set), (1)
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train Treey,’s using the (new) training set; (2) choose Treey, that minimizes validation error

Training: 700 examples

Dev:100
examples

Test: 200
examples
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Hyperparameter tuning using validation set

 E.g. in decision tree training, how to choose tree depth h € {1, ..., H}?

8
%
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loss
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hyperparameter

* Law of large numbers => Validation error closely approximates test error & generalization error
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Hyperparameter tuning: cross-validation

Main idea: split the training / validation data in multiple ways

For hyperparameter h € {1, ..., H}
* Fork €{],..,K}
e train f;* with S \ fold,
* measure error rate ey, ; of £t on fold,

~~ 1
 Compute the average error of the above: érr" = ;Zlk{=1 en k

Choose h = arg min érr"

h
Train f using S (all the training points) with hyperparameter h

k = |S|: leave one out cross validation (LOOCV)

Training set S
fold,, e foldg

[ ]
N
[ 1

B
[ ]

run 1

rn 2

run 3

run 4

runs
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Inductive bias

* What classification problem is class A vs. class B?
* Birds vs. Non-birds
* Flying animals vs. non-flying animals

» Definition of inductive bias: in the absence of data that narrow down the target concept, what type
of solutions are we likely to prefer?

 What is the inductive bias of learning shallow decision trees?
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An example real-world machine learning pipeline

* Any step can go wrong
* E.g. data collection, data representation

* Debugging pipeline: run oracle experiments
* Assuming the downstream tasks are perfectly done,
is this step achieving what we want?

e General suggestions:
e Build the stupidest thing that could possibly work
e Decide whether / where to fix it

; real world increase
goal revenue

,  real world better ad
mechanism display
learning classify

> problem click-through

interaction w/

4 data collection current system

5  collected data query, ad, click
data bow?. 4 click

6 representation ow", & clc

- select model decision trees,
family depth 20

8 select training subset from
data april’16

9 train model & final decision

hyperparams

tree

10

11

predict on test
data

evaluate error

subset from
may’16
zero/one loss
for £ click

12

deploy!

(hope we
achieve our
goal)
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Next lecture (8/31)

 Geometric view of machine learning; nearest neighbor methods
» Assigned reading: CIML Chap. 3 (Geometry and Nearest Neighbors)

 HW1 will be assigned
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