CSC 580 Principles of Machine Learning

02 Limits of Learning

Chicheng Zhang

Department of Computer Science

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun

1

Motivation

• Machine learning is a general & useful framework

• Understand when machine learning will and will not work

Optimal classification with known D

- Suppose:
 - Binary classification, 0-1 loss $\ell(y, \hat{y}) = I(y \neq \hat{y})$
 - *D* is *known*: for every (x, y), $P_D(x, y)$ can be computed

• What is the f that minimizes $L_D(f) = P_{(x,y)\sim D}(y \neq f(x))$?

Simple case: discrete domain ${\mathcal X}$

$P_D(x,y)$	x = 1	x = 2	x = 3
y = -1	0.2	0.2	0.15
y = +1	0.1	0.3	0.05

Which classifier is better?

- $f_1(1) = -1, f_1(2) = -1, f_1(3) = -1 \implies L_D(f_1) = 0.1 + 0.3 + 0.05$
- $f_2(1) = -1, f_2(2) = +1, f_2(3) = -1 \implies L_D(f_2) = 0.1 + 0.2 + 0.05$
- What is the best classifier?
- For any x, should choose y that has higher value of $P_D(x, y)$
- $f^*(1) = -1, f^*(2) = +1, f^*(3) = -1$

Bayes optimal classifier

- $f_{BO}(x) = \arg \max_{y \in \mathcal{Y}} P_D(X = x, Y = y) = \arg \max_{y \in \mathcal{Y}} P_D(Y = y | X = x), \forall x \in \mathcal{X}$
- Theorem: f_{BO} achieves the smallest error rate among all functions.
- Bayes error rate: $L_D(f_{BO})$

Proof of theorem

• Step 1: consider accuracy:

•
$$A_D(f) = 1 - L_D(f) = P_D(Y = f(X)) = \sum_x P_D(X = x, Y = f(x))$$

- Suffices to show f_{BO} has the highest accuracy
- Step 2: comparison:

$$A_D(f_{BO}) - A_D(f) = \sum_{x} P_D(X = x, Y = f_{BO}(x)) - P_D(X = x, Y = f(x)) \ge 0$$
$$f_{BO}(x) = \arg\max_{y \in \mathcal{Y}} P_D(X = x, Y = y)$$

• Remark: similar reasoning can be used to prove the theorem with continuous domain \mathcal{X} (sum -> integral)

Bayes error rate: alternative form

$$L_{D}(f_{BD}) = P_{D}(Y \neq f_{BD}(X))$$

= $\sum_{x} P_{D}(Y \neq f_{BD}(x) \mid X = x) P_{D}(X = x)$
= $\sum_{x} (1 - P_{D}(Y = f_{BD}(x) \mid X = x)) P_{D}(X = x)$
= $\sum_{x} (1 - \max_{y} P_{D}(Y = y \mid X = x)) P_{D}(X = x)$
= $E[1 - \max_{y} P_{D}(Y = y \mid X)]$

• Special case: binary classification

•
$$L_D(f_{BD}) = \sum_x P_D(Y \neq f_{BD}(x), X = x)$$

= $\sum_x \min(P_D(Y = +1, X = x), P_D(Y = -1, X = x))$

When is the Bayes error rate nonzero?

- $L_D(f_{BO}) = \sum_x \min(P_D(Y = +1, X = x), P_D(Y = -1, X = x))$
- Limited feature representation

- feature noise
 - Sensor failure
 - Typo in reviews for sentiment classification
- label noise
 - Crowdsourcing settings

{Over,Under}-fitting

• Q: should I train a shallow or deep decision tree?

- Underfitting: have the opportunity to learn something but didn't
- Overfitting: pay too much attention to idiosyncrasies to training data, and do not generalize well
- A model that neither overfits nor underfits is expected to do best

Unbiased model evaluation using test data

- Your boss says: I will allow your recommendation system to run on our website only if the error is <= 10%!
- How to prove it?
- Idea: reserve some data as test data for evaluating predictors

•
$$L_{\text{test}}(\hat{f}) = \frac{1}{|S_{\text{test}}|} \sum_{(x,y) \in S_{\text{test}}} I(y \neq \hat{f}(x))$$

• Law of large numbers $\Rightarrow L_{\text{test}}(\hat{f}) \rightarrow L_D(\hat{f})$

Law of large numbers (LLN)

- Suppose $v_1, ..., v_n$ are independent random variables that are identically distributed, the sample average $\bar{v} = \frac{1}{n} \sum_{i=1}^{n} v_i$ converges to $E[v_1]$ as $n \to \infty$
- Useful in e.g. election poll
- Foundations of statistics

• Can we apply LLN to conclude that • $L_{\text{train}}(\hat{f}) = \frac{1}{|S_{\text{train}}|} \sum_{(x,y) \in S_{\text{train}}} I(y \neq \hat{f}(x)) \rightarrow L_D(\hat{f}) \text{ as } |S_{\text{train}}| \rightarrow \infty?$ predictor \hat{f}

Never touch your test data

- If \hat{f} depends on test examples, $L_{\text{test}}(\hat{f})$ may no longer estimate $L_D(\hat{f})$ accurately
- E.g. indirect dependence:
 - adaptive data analysis choose a new learning algorithm based on seeing that the previous algorithm produces an high-test-error model

Class Participation

- Asking review questions on Piazza (3pts)
 - Every week, I will ask two of you to post questions (related to the past week's material) on Piazza
 - 3 questions per student
- Other in-class / Piazza discussions (e.g. asking/answering in-class questions; Piazza Q&As)
- Extra credit: Catching errors in the CIML book
 - Post on Piazza; we'll discuss and confirm together, and hopefully send these back to the author
 - 1pt for every error found

Supervised learning setup

iid training data S has low generalization error

Generalization error: $L_D(f) = E_{(x,y)\sim D} \ell(y, f(x))$

Terminologies

- Model: the predictor \hat{f}
 - Often from a model class ${\mathcal F}$,
 - e.g. $\mathcal{F} = \{ \text{decision trees} \}, \{ \text{linear classifiers} \}$

- Parameter: specifics of \hat{f}
 - E.g. for decision tree \hat{f} : tree structure, questions in nodes, labels in leaves
 - For linear classifier: linear coefficients
- Hyperparameter: specifics of learning algorithm ${\mathcal A}$
 - E.g. in DecisionTreeTrain, constrain to output tree of depth $\leq h$
 - Tuning hyperparameters often results in {over, under}-fitting

Hyperparameter tuning using validation set

- E.g. in decision tree training, how to choose tree depth $h \in \{1, ..., H\}$?
- For each hyperparameter h ∈ {1, ..., H}:
 Train Tree_h using DecisionTreeTrain by constraining the tree depth to be h
 Choose one from Tree₁, ..., Tree_H
- Idea 1: choose $Tree_h$ that minimizes training error
- Idea 2: choose Tree_h that minimizes test error
- Idea 3: further split training set to training set and validation set (development/hold-out set), (1) train Tree_h's using the (new) training set; (2) choose Tree_h that minimizes validation error

Hyperparameter tuning using validation set

• E.g. in decision tree training, how to choose tree depth $h \in \{1, ..., H\}$?

• Law of large numbers => Validation error closely approximates test error & generalization error

Hyperparameter tuning: cross-validation

- Main idea: split the training / validation data in multiple ways
- For hyperparameter $h \in \{1, ..., H\}$
 - For $k \in \{1, \dots, K\}$
 - train \hat{f}_k^h with $S \setminus \text{fold}_k$
 - measure error rate $e_{h,k}$ of \hat{f}_k^h on fold_k
 - Compute the average error of the above: $\widehat{\operatorname{err}}^h = \frac{1}{K} \sum_{k=1}^{K} e_{h,k}$
- Choose $\hat{h} = \arg\min_{h} \widehat{\operatorname{err}}^{h}$
- Train \hat{f} using S (all the training points) with hyperparameter \hat{h}
- k = |S|: leave one out cross validation (LOOCV)

Inductive bias

- What classification problem is class A vs. class B?
 - Birds vs. Non-birds
 - Flying animals vs. non-flying animals

- Definition of <u>inductive bias</u>: in the absence of data that narrow down the target concept, what type of solutions are we likely to prefer?
- What is the inductive bias of learning shallow decision trees?

20

An example real-world machine learning pipeline

- Any step can go wrong
 - E.g. data collection, data representation

- Debugging pipeline: run oracle experiments
 - Assuming the downstream tasks are perfectly done, is this step achieving what we want?
- General suggestions:
 - Build the stupidest thing that could possibly work
 - Decide whether / where to fix it

1	real world	increase	
	goal	revenue	
2	real world	better ad	
	mechanism	display	
3	learning	classify	
	problem	click-through	
4	data collection	interaction w/	
	data collection	current system	
5	collected data	query, ad, click	
6	data	bow^2 , \pm click	
	representation		
7	select model	decision trees,	
	family	depth 20	
8	select training	subset from	
	data	april'16	
9	train model &	final decision	
	hyperparams	tree	
10	predict on test	subset from	
	data	may'16	
11	evaluate error	zero/one loss	
		for \pm click	
12		(hope we	
	deploy!	achieve our	
		goal)	

Next lecture (8/31)

- Geometric view of machine learning; nearest neighbor methods
- Assigned reading: CIML Chap. 3 (Geometry and Nearest Neighbors)
- HW1 will be assigned