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The supervised learning problem



Recap: Supervised learning

* Training / test data: datasets comprised of labeled examples: pairs of (feature, label)
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e Question: what makes a test procedure “reasonable”?
* Test data: should it come from some other population? Should it overlap with the training data?
* Compare predicted labels with true labels: how?



Supervised learning: formal setup

* Training and test data are drawn independently from the same data generating distribution D
* |ID: independent and identically distributed

* Training and test data are independent
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Supervised learning: formal setup (cont’d)

* Scenario 1: classification * Scenario 2: regression ¢ Loss function £: measuring the
prediction quality with respect to
ground truth label

2000 sgft , $907K
\/
: * Examples:
function
function ("regressor”) * Zero-one loss
("classifier”) ' £(y,y) = I(y # y) - classification
\/ $840K  Square loss
L(y,9) = (y — 9)? - regression
cat Y,y y—=y g
\ \ * Absolute loss:
£(y,9) = |y — J| - regression

\/ How to evaluate?



Supervised learning setup: putting it together
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* Goal: design learning algorithm A such that its output f on \ 7
iid training data S has low generalization error @

Generalization error: Ly (f) = E(xyy~p £y, f (X))
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Supervised learning algorithm: decision trees



Example: course recommendation

 Build a software: given a student, recommend a set of courses that s/he likes

* Induced supervised learning problem:

course description
student info.

predictor f

» rating € {4+, —}




Decision trees: basic terminology

ISSystems?

no yes

@ takenOtherSys?

J\

morning?| |[likedOtherSys?

Figure 1.2: A decision tree for a course
recommender system, from which the
in-text “dialog” is drawn.

node parent
root node children
leaf node subtree
internal node depth

e Key advantage of using decision trees for decision
making: intepretability

* Useful in consequential settings, e.g. medical
treatment, loan approval, etc.

nodes organized in a tree-based structure, leading to a prediction (Fig. 1). The interpretability
of decision trees allows physicians to understand why a prediction or stratification is being
made, providing an account of the reasons behind the decision to subsequently accept or

override the model’s output. This interaction between humans and algorithms can provide



Prediction using decision trees

» Test: predict using a decision tree:

Algorithm 2 DecistONTREETEST(tree, test point)

. If tree is of the form LEAF(guess) then guess=prediction
= return guess
5 else if tree is of the form Nobpx(f, left, right) then

yes

¢ If f = noin test point then (ORI

5: return DecistoNTREeTEsT(left, test point) p yes left=no

6 else | | imorning?| IlkedOtherSys? right=yes
7 return DEecistoNTReeTEST(right, test point) =

s end if z L ‘/ X

o end if

* Training: how to design a learning algorithm <A that can build trees f from training data? .



Course recommendation: simplified setup

training data S
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Generalization error vs. training error

* The training data S = {(x;, yi)}i%,

Given a predictor f, its training error Lg(f) = E(xy)~s £(y, f (X)) = %Z?L L(y;, f(x;))
Consider zero-one loss, £(y,9) = I(y # V) = Ls(f) = Ey)~s [y # f (X)) = Pixyy~s v # f(x))

Heuristic: f with low Ls(f) = f with low Ly (f)
e Also known as the “Empirical risk minimization” (ERM) approach

e |ssues with ERM?

How easy is it to compute a decision tree f that minimize Ls(f)?
e k-node decision tree, d-dimensional data = at least O (d*) time complexity
e Can we design efficient algorithms?
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Decision tree training: single level case

what question would | ask?

( max(6,4) + max(6,4) )/ 20=0.6

* Best training accuracy using ‘Al’:
( max(9,2) + max(3,6) ) /20 =0.75

Q: if | could only ask one question (design a depth-1 tree),

Intuition: look at the histograms of labels for each feature

Which feature is better, ‘easy’ or ‘Al’?

Best training accuracy using ‘easy’:
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Decision tree training: single level case

* In formula: 10 5% 6
* Score(f,S) = max (PS(Y = +,x; = yes),Ps(y = —, %7 = yeS)) eaE}“i m’ ‘g

+max (Ps(y =+, x5 = no),PS(y = —Xf = no)) 0 : - .
* Written in conditional probability: Purity measure

A
=|max ( Ps(y = +| xr = yes), Ps(y = —| x; = yes )] - Ps(x; = yes)

+max(P5(y — +| Xf =No ),PS(y - —| Xf = No )) - PS(xf = no)

 e.g. Score('easy’,S)=max(0.6, 0.4) x 0.5 + max(0.6,0.4) X 0.5 = 0.6
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Decision tree training: general level case

High-level idea: greedy + divide & conquer

60% Jike
overall:  |40%] nah

Build the root of the tree greedily

Build the left and left subtrees recursively

When to stop the recursion?

takenOtherSys?|

no yes

|morn|ng—| likedOtherSys?|

i&d &
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Algorithm 1 DECISIONTREETRAIN(data, remaining features) answer=label

. guess <— most frequent answer in data // default answer for this data Unambiguous=achieves 100% acc.
2 If the labels in data are unambiguous then

5 return LEAF(guess) // base case: no need to split further

« else if remaining features is empty then 5% 6

s return LEeAF(guess) // base case: cannot split further 1[]_ _ il

e else // we need to query more features easy. < E0% 6

»  forall f € remaining features do 10 (@@ 4

10:

11:

120

13:

14:

15!

16:

17:

18:

19

NO < the subset of data on which f=no

YES < the subset of data on which f=yes

Score(f,S) =max|(Ps(y = +,xr = yes),Ps(y = —,xr = yes
score[f] < # of majority vote answers in NO / ( S( ! ) S ( f ))

+max (Ps(y =+,xr = no),PS(y = —,Xr = no)

N——

+ # of majority vote answers in YES

// the accuracy we would get if we only queried on f
end for
f < the feature with maximal score(f)
NO <« the subset of data on which f=no
YES < the subset of data on which f=yes Q: is this algorithm guaranteed to terminate?
left < DEc1sIONTREETRAIN(NO, remaining features \ {f})
right <~ DECISIONTREETRAIN(YES, remaining features \ {f})
return NODE(f, left, right)
. end if 17




Dealing with various types of features

* Binary: x; € {0,1}
* Node: xr = 07

* Categorical: x5 € {1,2,...,C}
* Node: x¢ € {iy, ..., [;}?

age. |luat beat vate,
o ® 000 ped

e real value: Xf € R

* Node: xf < z? ™ T ’i\% T J[;T/\\

> A9e.
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Example: spam filtering |

» Spam dataset

» 4601 email messages, about 39% are spam
» Classify message by spam and not-spam

» 57 features

» 48 are of the form “percentage of email words that is (WORD)"

» 6 are of the form “percentage of email characters is (CHAR)"
» 3 other features (e.g., “longest sequence of all-caps”)

» Final tree after pruning has 17 leaves, 9.3% test error rate

Q: what is the best depth-0 decision tree,
and what is its accuracy?

ch$>0.0555

/ch$<0.0555

Neer: spam
80117 48/35
remove<0.06 hp<0.4Q5
remove>0.06 / hp>0.405

em: (spam (bpa n i}
80/106 /"’971’ 1z 26/33 0/22
ch!<0.191 george< .15 CAPAVE<2.907
ch! >O 191

/ george)O 15/ CA \AVE>2 907
spa m spam spaﬂn
i'smfi 77227

? 13)
80786 00720
george<lg.005 CAPAVE 2.7505 1999<0.568

A/ george>0.005 CA AVE>2 7505 1999>0.58
m. am spam |
P ﬁ P

80/65 0/209 36/12: 16/81 18/109 [JI4]
hp<0.0 free<0.065
hp>0 03

free>0.065
}77/423 \_377275_‘

1 ; sSpaim
16/9'2, L@?ej
CAPMAX<N0.5

business<0.145
CA

MAX 10.business>0.145
20723 57/1 8 14789 375
receive<{().125 edu<0.045

receive>0.12 edu>0.045

sp aﬁn m
197236 172 48/11 or72
our<1.
our>1.2

[/

spam
37/101 112 19

He



Decision tree training: generalized scores

Score(f) = a measure of informativeness of f

Approach: find a split that maximizes informativeness / reduces uncertainty (“chaoticness”)

Uncertainty measures of population:

Notions of uncertainty: binary case (Y = {0,1})

Suppose in a set of examples S C X’ x {0, 1}, aﬂfraction are labeled as 1

@ Classification error:
u(S) == min{p, 1 — p}
@ Gini index:
u(S) :=2p(1 - p)

© Entropy:

1 1
u(S) := plog ;+(1—p) log ¢

0.5

0.45F
04r
0.351
03r
0.25r
0.2r
0.15r
0.1F

0.05
0

(3) is divided by 2
so the plot looks
comparable

0

0.2

0.4

0.6

0.8

log here is base-2
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Decision tree training: generalized scores

* Multiclass classification setting: Y = {1, ..., K}

Notions of uncertainty: general case

Suppose in S C X x ), afraction are labeled as k (for each k € ))).

@ Classification error:
u(S) := 1 — max p«

key
@ Gini index:
u(S) :=1-> p;
key
© Entropy:

1
u(S) = Z p« log o

key

Each is maximized when py = 1/|Y)| for all k € Y
(i.e., equal numbers of each label in S)

Each is minimized when p, = 1 for a single label k € Y

(so S is pure in label)

21



Decision tree training: generalized scores

Suppose the data S at a leaf £ is split by a rule h into S; and Sg, where
pr:=|Sc|/|S| and pr :=|Sr|/|S]

data S at leaf ¢
uncertainty: u(5S)

7N
7 ~

p, fraction L7 NN pr fraction
have h(z) =0 -~ ’ ™ ~ have h(z) =1
& A
St SR
uncertainty: u(Sy) uncertainty: u(Sg)

The reduction in uncertainty from using rule h at leaf / is

u(S) — (pL -u(SL) + pr - u(SR)) =: Score(h, S) (Generalized)



Generalized splitting criteria in action

Entropy uncertainty:

uS) = Ly,e+,— Ps(y = yo) log————

Score(S, f) = u(S) — (p, u(S,) + pr u(Sz))

£\

60%
10
easy: < o

10  [aowm

O b

PS(xf = no)

z PS(y =y | xr = no) log
Yo€&{+,—}

1

Ps(y =Y | Xf = no)

E.g. for the above S, Score('easy’, S) = 0, because:

* u(S) =0.6 10g0—16 + 0.4 log0—14, p; = 0.5,pr = 0.5
1 1
 u(S;) =u(Sg) = 0.6 logg + 0.4 logﬁ

In this case, Score(S, f) is also known as the mutual information between x; and y under Ps
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Stop splitting when there is no reduction in uncertainty? This is a bad idea!

The ‘XOR’ data:

Suppose X = R? and )Y = {red, blue}, and the data is as follows:

A B |AYRE >
oo | O ll mEmE EEB
o | f + A EE EEBN
o [ | !mEm EEN
v Lo

! mEE EEHN
{mENE EEHN
‘" mmm mEm

> 1
0 1

* Any axis-aligned split has no reduction on uncertainty on S
However, a depth-2 decision tree (with axis-aligned splits) has zero training error
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Overfitting can happen

e “Spurious” patterns can be learned.

A better alternative:

_%
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Next lecture (8/29)

Supervised learning: what to do if the data distribution is known?

Models, parameters, hyperparameters

Practical considerations

Assigned reading: CIML Chap. 2 (Limits of learning)
HW 0 due
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