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What is machine learning?



What is machine learning (ML)?

• Tom Mitchell established Machine Learning Department at CMU (2006).

• In short: algorithms adapt to data

• A subfield of Artificial Intelligence (AI) – computers perform “intelligent” tasks. 

• Classical AI vs ML: rule-driven approaches vs. data-driven approaches 
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AI Task 1: Image classification

• Predefined categories: 𝐶 = {sea, trees, path, …}

• Given an image, classify it as one of the set 𝐶 with the highest accuracy as possible.

• Use: sorting/searching images by category.

• Also: categorize types of stars/events in the Universe (images taken from large surveying telescopes)
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AI Task 2: Recommender systems

• Predict how user would rate a movie

• Use: For each user, pick an unwatched movie with the high predicted ratings.

• Possible approach: compute user-user similarity or movie-movie similarity, then compute a 
weighted average.
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AI Task 3: Machine translation
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AI Task 4: Board games

• Predict win probability of a move in a given game state (e.g., AlphaGo)

• Traditionally considered as a “very smart” task to perform.

• Use: Professional go playing, leisure
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Traditional AI vs Machine Learning (ML)

• Traditional AI: you encode the knowledge (e.g., logical rules), and the machine
makes ‘inference’, e.g. given ``a -> b and b-> c’’, deduce ``a-> c’’. 

• Example rule: has-feather-texture(object) and has-beak(object) -> is-bird(object).

• Deductive reasoning

• ML: given a number of input and output observations (e.g., animal picture + label), output a 
function (can be a set of logical statements or a neural network) that maps the input to the output 
accurately.

• “Big data” setting => better to learn from data than to encode domain knowledge manually.

• “statistical” / data-driven approach – inductive reasoning 

• Note: Traditional AI and ML can work synergistically
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Work in ML

• The usual CS background is often not sufficient – especially mathematical side, beyond discrete 
math.

• Applied data scientist

• Collect/prepare data, build/train models, analyze errors

• ML engineer

• Implement/fine-tune ML algorithms and infrastructure

• ML researcher

• Design/analyze models and algorithms

• Theory: Provide mathematical guarantees. E.g., If I were to achieve 90% accuracy, how many 
data points do we need?  => sample complexity(see e.g. CSC 588)
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Prerequisites

• Math

• linear algebra, probability & statistics, multivariate calculus, reading and writing proofs.

• Q: how many of you are familiar with eigen-decomposition?

• Software/programming

• You need be familiar with at least one programming language

• You need to be fluent at writing functions and using them efficiently.

• Much ML work is implemented in python with libraries such as numpy and pytorch.
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Overview of ML problems
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Supervised learning

Unsupervised learning Interactive learning
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Supervised Learning



• Training data: dataset comprised of labeled examples: pairs of (feature, label)

Basic setting: Supervised learning
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Example classifier 1: Decision tree

• Task: predict the rating of a movie by a user

• If age >= 40 then

• if genre = western then

• return 4.3

• else if release date > 1998 then

• return 2.5

• else ..
…
end if

• else if age < 40 then
…

• end if
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Example classifier 2: Linear

• E.g., Image classification

• Let 𝑥 be a set of pixel values of a picture (30x30 resolution) => 900 dimensional vector 𝑥.

• If 0.124 ⋅ 𝑥1 − 2.5 ⋅ 𝑥2 +⋯+ 2.31 ⋅ 𝑥900 > 2.12 then 

• return cat

• else

• return dog

• end

• Coefficients: signed “importance weights”
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Example function 3: Nonlinear
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Kernel classifiersNeural network

(stacked linear models with nonlinear activation functions) (linear in the induced feature space)



Supervised learning: Types of prediction problems

• Binary classification

• Given an email, is it spam or not? 

• Multi-class classification

• Image classification with 1000 categories.

• Regression: the label is real-valued (e.g., price)

• Say I am going to visit Italy next month. Given the air ticket price trends in the past, what would 
be the price given (the # of days before the departure, day of week)?

• Structured output prediction: more than just a number

• Given a sentence, what is its grammatical parse tree?
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The challenge: How to learn a function

• Why not learn the most complex function that can work flawlessly for the training data and be done 
with it? (i.e., classifies every data point correctly)
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• Extreme: memorization. 

• For a test example, if it exactly matches some training 
example, output the corresponding label

• Otherwise, output some default label, say blue

• It does not work.

• Need to learn from training dataset, but don’t ”over-do” it.

• This is called “generalization” – an important notion. green: memorization
black: optimal decision boundary



Unsupervised learning 

• Finding structures in data, e.g. 

• Clustering

• Dimensionality reduction 
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Interactive learning

• Algorithms collect and analyze data to make decisions 

• E.g.:

• Reinforcement learning 

• Imitation learning 
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What to expect in the class

• How to use sklearn, pytorch, tensorflow, fine-tuning deep net algorithms.

• You are encouraged to learn these on your own

• Algorithmic and statistical principles

• Well-studied models and methods.

• Those that give you some “understanding”.

• These are and will be referred/extended/revisited in the future.

• Programming and proofs

• No need to be a guru.

• But you must be familiar enough to (1) follow popular codes and proofs and (2) be able to adapt 
yourself to new programming tools and proofs in the future.
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Logistics



Course structure

• D2L: for important email communications

• Course website: https://zcc1307.github.io/courses/csc580fa22

• Piazza: mainly for Q&A/discussion.

• Gradescope: submitting homeworks

• Book: “A Course in Machine Learning” (CIML) by Hal Daume III

• http://ciml.info/
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Syllabus summary

• Warm up

• Basic supervised learning: decision tree, k-NN, perceptron

• Practical issues in supervised learning: evaluation, feature selection, etc.

• Bias-variance decomposition

• Learning methods

• linear models, kernels

• naïve Bayes, graphical models (cf. CSC 696H by Prof. Jason Pacheco, Math 577-001 by Prof. 
Misha Chertkov)

• neural networks (cf. ISTA 457/INFO 557 by Prof. Steve Bethard)

• Other training methods: ensemble, stochastic gradient descent

• Other paradigms: unsupervised learning, reinforcement learning

• Learning theory

• Also complementary to Math 574M (by Prof. Helen Zhang)
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Syllabus summary
• 08/22: HW0 (calibration) assigned

• 08/31: HW1 assigned

• 09/19: HW2 assigned

• 10/12: Midterm exam (at the class meeting 
time) 

• 10/19: Project proposal due

• 11/02: HW3 assigned

• 11/16: HW4 assigned

• 12/13: Final exam at 3:30pm - 5:30pm

• 12/15: Final project report due

• Due: HW0 is due in 7 days. HWs 1-4 are due in 
10 days. 

• NO LATE DAYS
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• The instructing staff will assign grades on a 
scale from 0 to 100, with the following 
weights:
• Homework assignments: 40%

• Project: 20%

• Midterm exam: 15%

• Final exam: 15%

• Participation: 10%

• Project: 

• pick a paper in recent ML venue and 
implement it

• pioneering new applications of ML (e.g., 
connect to your research)

• talk to me for other ideas.



Office hours

• Tuesdays 4-5pm, GS 720

• Or by appointment 
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Participation

• You are expected to do assigned readings, and participate in in-class discussions 

• Stop me at any point to ask questions.

• Any ideas to encourage participation?

• I will also find ways to encourage off-class discussion in Piazza.
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Academic integrity

• Case study 1

• Two students with the same department with the same cultural background.

• 5-6 lines out of 100 lines exactly the same (python code).

• Case study 2

• Final project was planned to be something about reinforcement learning

• However, the submitted final project was something completely different.

• It says ‘in this thesis, …’ in the abstract. => turns out, the student copy-pasted his/her master’s 
thesis.

• So, what happened to them?

• No tolerance. You will get an F. 
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HW0

• Calibration purpose; due on 8/29 5pm. NO LATE DAYS. Will not accept late submissions.

• Will not be part of the homework score.

• I require that you spend some time to figure out an answer to the homework.

• If you failed to figure out, please explain what you have done to find an answer and where you get 
stuck.

• DON’T:  ”I googled it and nothing came up”

• DO: “I read material A, and there is this statement B that seems to help, but when I tried to 
apply, C became an issue due to independence. ..."

• The participation score will be deducted (-2 out of 10pts) if …

• Empty answers

• No nontrivial efforts to solve it.
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HW0 Submission: Gradescope

• Watch the video and follow the instruction: https://youtu.be/KMPoby5g_nE

• Please upload one PDF file.

• If you do it handwritten, then make sure you picture it well. I recommend using TurboScan
(smartphone app) or similar ones to avoid looking like slanted or showing the background.
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Background refreshers
Probability

• http://cs229.stanford.edu/section/cs229-prob.pdf

• Lecture notes: http://www.cs.cmu.edu/~aarti/Class/10701/recitation/prob_review.pdf

Linear Algebra:

• http://cs229.stanford.edu/section/cs229-linalg.pdf

• Short video lectures by Prof. Zico Kolter: http://www.cs.cmu.edu/~zkolter/course/linalg/outline.html

• Handout associated with above video: http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf

Big-O notation:

• http://www.stat.cmu.edu/~cshalizi/uADA/13/lectures/app-b.pdf

• http://www.cs.cmu.edu/~avrim/451f13/recitation/rec0828.pdf

Other resources:

• The matrix cookbook: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

• The probability and statistics cookbook: http://statistics.zone/

• Calculus cheatsheet: https://tutorial.math.lamar.edu/pdf/calculus_cheat_sheet_all.pdf
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Next lecture (8/24)

• The supervised learning paradigm 

• Decision-tree learning 

• Assigned reading: CIML Chap. 1 (Decision Trees)
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Thank you!
Questions?


