
CSC 480/580 Homework 1

Due: 2/15 (Th) 5pm

Instructions:

• Submit your homework on time to gradescope. NO LATE DAYS, NO LATE SUBMISSIONS
ACCEPTED.

• The submission must be one single PDF file (use Acrobat Pro from the UA software library if
you need to merge multiple PDFs).

• Email your code to csc580homeworks@gmail.com.
– You can use word processing software like Microsoft Word or LaTeX.
– You can also hand-write your answers and then scan it. If you use your phone camera, I

recommend using TurboScan (smartphone app) or similar ones to avoid looking slanted
or showing the background.

– Watch the video and follow the instruction: https://youtu.be/KMPoby5g_nE .
– Points will deducted when you do not follow the instruction.

• Collaboration policy: do not discuss answers with your classmates. You can discuss HW for
the clarification or any math/programming issues at a high-level. If you do get help from
someone, please make sure you write their names down in your answer.

• If you cannot answer a problem, describing what efforts you have put in to solve the problem
and where you get stuck will receive partial credit. Also, feel free to post your questions on
Piazza.
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Problem 1. Let (X, Y ) follow the distribution D, which has the following joint probability table:

X = 0 X = 1 X = 2 X = 3

Y = −1 1
54

1
9

2
9

4
27

Y = +1 2
9

2
9

1
18 0

(a) Let classifier f to be such that f(0) = f(1) = f(2) = −1 and f(3) = +1. What is the error rate of
f on D, LD(f) = P(x,y)∼D(f(x) ≠ y)?
(b) What is D’s Bayes optimal classifier fBO?

(c) What is D’s Bayes error rate LD(fBO)?
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Problem 2. Generalized uncertainty measures.

(a) For p = (p1, p2, p3), recall that the classification error-based uncertainty measure is de-
fined as v1(p) = 1 −maxk∈{1,2,3} pk and the Gini index-based uncertainty measure is defined
as v2(p) = 1 −∑d

k=1 p2
k. Let p = (0.6, 0, 0.4) and q = (0.62, 0.19, 0.19). Is v1(p) ≥ v1(q)? Is

v2(p) ≥ v2(q)? Justify your answer.

(b) Given a training dataset S, we would like to calculate the information score of feature xf using the
entropy uncertainty score u(T ) = ∑y∈Y PT (Y = y) log2( 1

PT (Y =y)
). Using the notation in the lecture

slides, denote SL = {(x, y) ∈ S ∶ xf = 0} , SR = {(x, y) ∈ S ∶ xf = 1}, and pL, pR as their respective
proportion.

xf = 0 xf = 1 Total

y = −1 4 3 7

y = +1 4 9 13

(b.1) Calculate u(S), u(SL), u(SR) respectively. Express the results in decimals.

(b.2) Calculate Score(f, S) = u(S) − (pLu(SL) + pRu(SR)). Is the score negative or negative?
Does your calculation result match your intuition?
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Problem 3. Decision trees with entropy uncertainty.

(a) Consider the entropy uncertainty u(S) = ∑y∈Y PS(Y = y) log2( 1
PS(Y =y)

) where S is a labeled
dataset and PS(Y = y) is the fraction of examples in S with label y. Note that when PS(Y = y) = 0,
the term Vy = PS(Y = y) log2(1/PS(Y = y)) is undefined. In this case, which value should we use
for Vy to make sure Vy is continuous w.r.t. PS(Y = y)? Hint: Remember L’Hopital’s rule.

(b) Implement the decision tree in Python as described in the book (handles only the binary features)
but use the entropy instead of the classification error. Implement an option of max depth so the
trained tree will have depth at most max depth (in our case, it corresponds to only considering at
most max depth features). Make sure to email your code to csc580homeworks@gmail.com so
that I can run it.

Use the data in the book (Table 1) while taking the rating 2/1/0 as positive and -1/-2 as negative.
Train your decision tree with your code with max depth = 2. Report your tree along with the
following information (in whatever form a person can reasonably comprehend)

• What are the branching questions at each node?
• What are the uncertainty scores at each node?
• Show the predicted label for each leaf node.
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Problem 4. The k-Nearest Neighbor Classifier.

Let us define the data distribution D consisting of two-dimensional features X ∈ R2. Each
dimension of X = (X1, X2)T is uniformly distributed on the unit interval: X1 ∼ Uniform[0, 1] and
X2 ∼ Uniform[0, 1]. Let i(X) be 1 if X1 < 1/3, 2 if X1 ∈ [1/3, 2/3), and 3 if X1 ≥ 2/3. Define
j(X) similarly for the second dimension X2 (i.e., replace X1 above by X2). Furthermore, the labels
are binary with P(Y = 1 ∣X = x) = Ai(x),j(x) and,

A =
⎛
⎜⎜
⎝

.1 .2 .2

.2 .4 .8

.2 .8 .9

⎞
⎟⎟
⎠

(Ai,j ∈ R is the entry of matrix A at i-th row, j-th column) Throughout, we abuse notation and use P
for both probability of events and the density function for continuous random variables.

Some preparations:

(1) Using the book as a guideline, implement the k-Nearest Neighbor algorithm with Euclidean
distance in Python.

(2) Implement a function that draws m i.i.d. samples from D. Draw 10,000 points from D and call
them a test set, but do this once and for all and use the same test set throughout the problems here.

Questions:

(a) What is D’s Bayes optimal classifier and Bayes error rate?

(b) Plot the learning curve for nearest-neighbor classification. Let k = 4. Define M =
{10, 30, 100, 300, 1000, 3000}. Call the following one ‘trial’:

• Draw 3000 fresh data points from D and call it S.
• Then, for each m ∈M, choose the first m data points from S, train a k-NN classifier with

them, and then evaluate its test set error.

Perform 5 trials, compute the average test set error, and report the plot of ‘test error rate’ vs m. In
the same plot, plot a horizontal line that shows the Bayes error rate so we know how close we get to
the Bayes error rate.

(c) Let K = {1, 2, 4, 8, 16, 32, 64}. Do (b) for every k ∈ K. When k ≥m, simply force the code to set
k =m.
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Problem 5. **CSC 580 Students Only** Hyperparameter Tuning.

(a) Let us add hyperparameter tuning to the k-NN algorithm in the previous problem. For this,
just perform one trial (instead of 5) for simplicity. For each m ∈M, try tuning k by each of the
following:

• training set error.
• 20% hold out from the training set.
• 5-fold cross validation.
• test set error (this is impossible in practice, but we just want to see what is the actually best

one).

Implement each tuning method above and for each m ∈M report:

• What is the tuned k?
• What is the test set error when you use the tuned k? How far are they from the actual best k

measured by the test set tuning?

Discuss your findings; e.g., does one perform better than the other? why? if there is a failing method,
explain why.

(b) Let A be a learning algorithm that takes in a dataset S and performs 5-fold cross validation with
k-NN to choose the best k ∈ {1, 2, 4, 8, 16, 32, 64}, and then trains a k-NN classifier using S with
that chosen k. Plot the learning curve of A. For each m ∈M, plot both the training set data points
and the decision surface of the classifier obtained by A in one figure. (Total ∣M∣ plots.)

(c) Use the decision tree implementation of scikit-learn (https://scikit-learn.org/stable/
modules/tree.html#tree) and perform the same procedure as (a), but now by tuning its
max depth ∈ {1, 2, 3, 4, 5, 6}. Compare the trained k-NN and decision tree classifiers side-by-side.
Are there any differences? What might be the cause of the difference, if any? Are there any
qualitative difference in the decision boundaries?
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