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Midterm

* Mar 12, in class (9:30-10:45am)
* About 6 questions

* You can bring a A4-size note

* The process of preparing for the note Is a good way to organize
your knowledge



Supervised learning setup: putting It together
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 Goal: design learning algorithm A such that its output f on Te=- @- -=

iid training data S has low generalization error Generalization error: Ly (f) = E(xyy~p £, £ (%))
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Decision trees

« Test: predict using a decision tree:

Algorithm 2 DecistONTREETEST(tree, test point)

. If tree is of the form LEAF(guess) then

= return guess

5 else if tree is of the form Nobpx(f, left, right) then
5 If f = no in test point then

5: return DecistoNTREeTEsT(left, test point)
« else

7 return DEecistoNTReeTEST(right, test point)
s end if

o end if

guess=prediction

(like) takenOtherSys?|

no yes

knorm”g7]|“ked0ther5ys? IEaft no

dndy

« Training: how to design a learning algorithm A that can build trees f from training data?



Algorithm 1 DECISIONTREETRAIN(data, remaining features) answer=label

.« gliess < most frequent answer in data // default answer for this data Unambiguous=achieves 100% ac
2 If the labels in data are unambiguous then

5 return LEAF(guess) // base case: no need to split further

« else if remaining features is empty then 0% ] 6

s return LEeAF(guess) // base case: cannot split further 1[]_ _ il

e else // we need to query more features easy. < E0% 6

»  forall f € remaining features do 10 (@@ 4

5: NO < the subset of data on which f=no

o YES < the subset of data on which f=yes

1o score|[f] < # of majority vote answers in NO | gcore(f, S) = “informativeness of f (in predicting y) for dataset S”
1 + # of majority vote answers in YES

// the accuracy we would get if we only queried on f
= end for
13 f 4= the feature with maximal score(f)
i NO <« the subset of data on which f=no
5. YES < the subset of data on which f=yes Q: is_this algorithm guaranteed to
6. left <~ DECISIONTREETRAIN(NO, remaining features \ {f}) terminate’?
iy right < DECISIONTREETRAIN(YES, remaining features \ {f})
. return NODE(f, left, right)
1o end if 5




Example questions

* Given a decision tree and a test example, find out
the tree’s prediction on the example e

takenOther Sys7

morning?| [likedOtherSys?

* Calculate the information score of a feature /\ /

Score(S, ) = u(S) = (p, u(S,) + Pr u(Sk))
« See. E.g. HW1, Problem 2




k-nearest neighbors (k-NN): main concept

Training set: S = { (x4, Y1), ., ¢, Y )3

Inductive bias: given test example x, its label should resemble the
labels of nearby points

Function T
* Input: x .
® g ®
» find the k nearest points to x from S; call their indices . L e e ”
* output: the majority vote of {y;:i € N(x)} e o° .

« For regression, the average.



/ decision boundary




Variations

e Classification

 Recall the majority vote rule: y = arg er{m}ax Qien) Wi =¥}

» Soft weighting nearest neighbors: y = arg ,duax Yz wi H{y; =

where w; < exp(—f d(x,x;)), Of & 1+d(x,x;)P

* Quick question: Is a larger  resembling a larger
or smaller k?

v},




Example question
* Glven a dataset (say, of size 5), compute its induced k-nearest

neighbor prediction on a test example

* Glven a training dataset, compute the training error of its
iInduced 3-nearest neighbor classifier



Overfitting vs Underfitting

Underfit Optimum Overfit
(high bias)

(high variance)

* X ok ok 4
High training error Low training error Low training error
High test error Low test error High test error

Source: ibm.com



Example question

 Give three scenarios of underfitting / overfitting when training
a classifier

* E.g. k-nearest neighbor, decision tree, logistic regression, training
linear classifier using Perceptron

* How can we combat underfitting / overfitting?



Bayes optimal classifier

. - » p
Theorem fz, achieves the smallest 0-1 error among all classifiers.
feo(x) =argmaxPp(X =x, Y =y) =argmaxPp(Y =y |X =x),Vx € X

\ YEY yEY )

Example Iris dataset classification:
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Bayes error rate: alternative form

Lp(fo) = Zx(l _manPD(Y =yl X = X))PD(X = Xx)

= E[l—maxPD(Y=y|X)]
y

« Special case: binary classification

p(x|w2)Prob(w2)

p(x|wl)Prob(w1l)

20
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Example question

Ly (Fao) = z min( Py (Y = +1,X = x), Py (Y = —1,X = x))

* Give two real-world example data

distributions whose Bayes errors are nonzero
 Limited feature representation
* Noise In the training data '

* (see slides)

fffffff
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Example question

» Given a data distribution D over (x,y), compute the error rate
of a classifier & D's Bayes error rate
« See HW1, problem 1



New measures of classification performance

- True positive rate (TPR) actual class
_ TP Py=+1y=+1) — e —
- = P(y=+1) positive negative
cie - s
(aka recall, sensitivity) positive | true positives false positives
- True negative rate (TNR) = — (TP) (EP)
e N predicted <
(specificity) class e nega t -
- _ FP negative gatives rue negatives
 False positive rate (FPR) = — (FN) (TN)
N \.
- False negative rate (FNR) = ? P=TP+FN N=FP+TN
TP __ P(y=t1y=+1)

* Precision = P — called = TP + FP

P—called = P(§=+1)



Example question

» Given a small binary classification dataset (say of size 5) and
a predictor’s prediction score on it; compute the ROC curve

* What are the x and y values in the ROC curve?
* X: FPR
*Y: TPR

.98 +
A2
ol
24 +




OUTPUT: Y

Linear Regression

Regression Learn a function that
predicts outputs from Inputs,

y = f(x)

Outputs y are real-valued

Linear Regression As the name
suggests, uses a linear function:

y=wlz+b

| |
0 1

INPUT: X

28 We will add noise later...



Linear Regression

Input-output mapping Is not exact, so we will add
zero-mean Gaussian noise,

Multivariate Normal
(uncorrelated)

y=w'z+e where e~ N(0,0?%)

This Is equivalent to the likelihood function,

p<y ‘ w,x) — N(y ‘ wTajaOQ) S _;NPLOJT:)1< |
Because Adding a constant to a Normal RV is still a Normal RV,

z ~ N(m, P) z4+c~N(m+c,P)

In the case of linear regression z — ¢ and ¢ — w! «



Learning linear regression models

We need to learn the model from data
by learning the regression weights

Data — We have this

|

T Random; Can’t do
y —w X _I_ € < anything about it

Y

Don’t know these;
need to learn them

How to do this?
What makes good
weights?



Learning Linear Regression Models

There are several ways to think about fitting regression:
* Intuitive Find a plane/line that Is close to data
* Functional Find a line that minimizes the least squares loss

« Estimation Find maximum likelihood estimate of parameters

They are all the same thing...



MLE for Linear Regression

® Actual response, y;

B Predicted response, f(x;) = by + b1
e Estimated regression line, f(x)=bo+ b1x
= = Residual, y;-f(x;)

Substitute linear regression
prediction into MLE solution
and we have,

N
min Y (y; — wx;)*
i=1
So for Linear Regression,

MLE = Least Squares
Estimation

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/



https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/

MLE of Linear Regression

Using previous results, MLE is equivalent to [ Image: Murphy, K. (2012) ]
minimizing squared residuals, T %

N
: T N2 T~ (2
min 3 (0 — w'a:)? = lly - w"X|

Some slightly more advanced linear algebra
gives us a solution,

o T —1~T Derivation a bit involved for lecture but...
W = (X X) X Yy  We know it has a closed-form and why

 We can evaluate it
* Generally know where it comes from

Ordinary Least Squares (OLS) solution



Example question

* Given a small dataset (say, size 5):
* Write down the optimization problem least square regression solves
* Be able to write down the derivative of the objective wrt w
« Compute the least square linear regression coefficient

* Given a small dataset, write down the optimization problem
logistic regression solves

wMHE = arg max Z {y@w x; — log (1 + e m)}
* How about SVM?



HW1: additional remarks

° P3 (b) Implement the decision tree in Python as described in the book (handles only the binary features)
but use the entropy instead of the classification error. Implement an option of max_depth so the
trained tree will have depth at most max_depth (in our case, it corresponds to only considering at
most max_depth features). Make sure to email your code to csc580homeworks@gmail . com so
that I can run it.

Use the data in the book (Table 1) while taking the rating 2/1/0 as positive and -1/-2 as negative.
Train your decision tree with your code with max_depth = 2. Report your tree along with the
following information (in whatever form a person can reasonably comprehend)

* What are the branching questions at each node?
* What are the uncertainty scores at each node?
« Show the predicted label for each leaf node.

« Sanity checks:
* Ensure that max_depth=2 feature Iis implemented
* Does your root node’s feature have a high information score?



HW1: additional remarks

° P 4 Let us define the data di:-;ttr.ihutiun D consisting of two-dimensional features X € B*  Each
dimension of X = (X;.X3)" is uniformly distributed on the unit interval: X; ~ Uniform[0, 1] and
X5 ~ Uniform[0,1]. Let i(X) be 1if X; < 1/3, 2if X, € [1/3,2/3), and 3 if X, > 2/3. Define
7(X) similarly for the second dimension X; (i.e., replace X; above by X5). Furthermore, the labels
are binary with P(Y =1 | X = x) = Aijxy () and,

d1 2 2
A=12 4 B8
2 8 9

(A ; € R is the entry of matrix A at i-th row, j-th column) Throughout, we abuse notation and use F
for both probability of events and the density function for continuous random variables.

* (a) Bayes optimal classifier
» Should be an indicator function of a subset of [0,1]?
« See solution guide




HW1: additional remarks

(b) Plot the learning curve for nearest-neighbor classification. Let £ = 4. Define M =
110, 30, 100, 300, 1000, 3000}, Call the following one “trial’:

* Draw 3000 fresh data points from T and call it 5.

* Then, for each m € M, choose the first m data points from S, train a k-NN classifier with

them, and then evaluate its test set error.

Perform 5 trials, compute the average test set error, and report the plot of “test error rate’ vs m. In

the same plot, plot a horizontal line that shows the Bayes error rate so we know how close we get to
the Bayes error rate.

» Sanity check:

* The test error of your k-NN classifiers should never be lower than
Bayes error rate (why?)






Basis Functions

* Abasis function can be any function of the input features X
* Define a set of m basis functions ¢1(z), ..., ¢m(x)
* Fit a linear regression model in terms of basis functions,

Yy = sz‘@(m) =w' ¢(x)

* Regression model is linear in the basis transformations
* Model is nonlinear in the data X



Kernel Functions

A kernel function iIs an inner-product of some basis function
computed on two Iinputs

M
k(r,x') = () (') =) dilx)di(a))
i=1

A conseguence Is that kernel functions are non-negative real-
valued functions over a pair of inputs,

k(z,2') € R k(x,z") >0

Kernel functions can be interpreted as a measure of
distance between two inputs



Kernel Functions

Example The linear basis ¢(x) = x produces the kernel,

k(z,2') = ¢p(x)" ¢(2’) = 2" 2]

It IS often easier to directly specify the kernel rather than the
basis function...

Example Gaussian kernel models similarity according to an
unnormalized Gaussian distribution,

/ 1 /N2 Note Despite the name,
K,(x, X ) — €eXP ——(LU — & ) this is not a Gaussian

2
20 probability density.

Also called a radial basis function (RBF)



Kernel Functions

Given any set of data {z;}, a necessary and sufficient
condition of a valid kernel function is that the nxn gram matrix,

k(z1,21) K(x1,x2) ... K(T1,2,)

k(xo,x1) kK(x2,x2) ... K(T2,2,)
K =

K(Tn, 1) K(Tn,T2) ... K(Tn,Tn)

Is @ symmetric positive semidefinite matrix.



Kernel Ridge Regression

Kernel representation requires inversion of NxXN matrix

Primal Dual
1 oi(z1) ... oéuml(z1) k(rx1,x1) k(x1,22) ... K(x1,TH)
( 1 p1(x2) ... ¢n(x2) \ ( K(z2,21)  K(T2,72) ... K(T2,T4) \
P — . . K= : . . .
\ 1 ¢1($N) qu(.CL'N) ) \ ’%(ajnvxl) ’f(xme) K,(:L“n,ﬂfn) )
w= (' ®+AN)"'®y y(r) =k(x)" (K+ )"y
A\ ~ _J \/_/
MxM Matrix Inversion NxN Matrix Inversion
O(M3) O(N?)

Number of training data N greater than basis functions M



k-NN classification: pseudocode

* Training Is trivial: store the training set

° TeSt Algorithm 3 KNN-Prep1cT(D, K, %)

list —— » 5 < 11
2 fOl’?’IZItONdO

append to list=—; S+ S & (d(xn, &), n) // store distance to training example n
+ end for
sort in first coordinate—— s S + SORT(S) // put lowest-distance objects first
6 0
» fork=1to K do
s (dist,n) < S; // n this is the kth closest data point
o YU+ yy /! vote according to the label for the nth training point
. end for
I\/Iajority vote of {Yi: [ € N(x)}—>u: return siGN(7) /lreturn +1if 7 > 0and —1if§ < 0

* Time complexity (assuming distance calculation takes 0(d)
time)
cO(md +mlogm +k) = O(m(d +logm))

35



Inductive Bias

Training

How would you label the test examples?

36
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