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Probabilistic modeling: systematic approach for ML

* The recipe:
1. Model how the data is generated by probabilistic models, but with
parameters unspecified (modeling assumption / generative story®

 Each example z ~ P(z;0) for some 6 € ©
* For z = (x,y) => supervised learning 2
» For z = x => unsupervised learning <
2. (Training) Learn the model parameter 8 » it
 Important example: maximum likelihood estimation (MLE),
maximizegeg log P(z4, ..., Z,; 0)
3. (Test) Make prediction / decision based on the learned model
P(z;0)
* Important example: predict using the Bayes classifier of
P(z; ) (for supervised learning)

training data

http://slideplayer.com/slide/4527958/



Probabilistic modeling: systematic approach for ML
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1. Model how the data is generated by probabilistic models, but with
parameters unspecified (modeling assumption / generative story®
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Probabilistic modeling (cont’'d)

* Why probabilistic modeling?
* Right thing to do if the model is correct

 If not...
« “All models are wrong, but some are useful” -- George Box

* Interpretability
* A view taken by classical statistics

All models are approximations.
Essentially, all models are
wrong, but some are useful.

However, the approximate

nature of the model must

always be borne in mind.
George Box

More science quotes at Today in Science History todayinsci.com




Graphical Models

A variety of graphical models can represent the same
probability distribution

Bayes Network ‘Factor Graph Markov Random Field
| Y

Directed Models Undirected Models

[Source: Erik Sudderth, PhD Thesis]



Graphical Models

A variety of graphical models can represent the same
probability distribution

Bayes Network

}

Directed Models
[Source: Erik Sudderth, PhD Thesis]



From Probabilities to Pictures

A probabilistic graphical model allows us to pictorially represent
a probability distribution

Graphical Model:
Probability Model: o e
p(x1, T2, 3) = q |
p(z1)p(z2)p(xs | 21, 72) e

« Conditional distribution of each RV Is dependent on its parent nodes in
the graph

* Intuition: arrows may encode causal relationship (e.g. x1=smoking,
X2=exercise, x3=cancer)



Directed Graphical Models

...tells how data are generated (called generative story; ancestral sampling)

Directed models are generative models...

Step 1 Sample root node: c~ p(C)

Step 2 Sample children, given sample of parent (likelihood):
1 ~p(X1|C =c) ro ~p(Xo | C =c)

— p(C, X1, X2) — p(c)p(Xl ‘ C)p(X2 ‘ C) J{t\)i?]:adpizt;inbduliicoens an ordered factorization of the



Probability Chain Rule

Recall the probability chain rule says that we can decompose
any joint distribution as a product of conditionals....

p(z1, 22,23, 24) = p(x1)p(x2 | T1)p(T3 | 1, 22)p(T4 | 1, T2, T3)
Valid for any ordering of the random variables...
p(w1, 2,73, 74) = p(w3)p(z1 | 3)p(ws | T1,23)p(T2 | T1,73,74)
For a collection of N RVs and any permutation p :

N
Pz, 2n) = p(@p) [Lize P(Tp) | Tpii—1)s -5 Tp(1))



Conditional Independence

Age

Recall two RVs X and Y are conditionally

independent given Z (or X LY | Z) iff:
p(X |Y,Z)=p(X | Z)

ldea Apply chain rule with ordering that

@ @
Foot Size Literacy Score

exploits conditional independencies to @ @

simplify the terms

Ex. Suppose z4 L 21 | z3 and x5 L x4 | 21, z5 then: @

p(z) = p(x3)p(z1 | 3)p(24

= p(z3)p(71 | x3)p(24

L1, $3)p($2 L1,L3, 334)

an ordered factorization of the joint
r3)p(z2 | 1,73) distribution induces a directed acyclic
graph (DAG)




General Directed Graphs

Def. A directed graph is a graph with edges (s, t) € € (arcs)
connecting parent vertex s € V to a child vertext € V

Def. Parents of vertext € V are given by the
3 set of nodes with arcs pointing to ¢,

Pa(t) = {s: (s,t) € £}

Children of ¢t € V are given by the set,

@ Ch(t) ={t: (t,k) € &}
Ancestors are parents-of-parents.
Descendants are children-of-children.




Directed PGM = Bayes Network
Directed acyclic graph (DAG) < factorized form of joint probability

p(z) = HP(S’JS | Tpas))

T3 /5\6% I—P Parents of node s
(" () p(@) = ples)p(as | 25)p(es | 23)p(es | o1, s)

D ~—

Each factor has a node; conditioning relationship represented by edge

 Model factors are normalized conditional distributions
 Locally normalized factors yield globally normalized joint probability



Bayes network: A real-world example

« Joint distribution = graph structure + conditional probability table

P(B=t. P(E=tr
Burglary ( oozue) Earthquake ( oozue)
B E| P(A=true|B.E)
t .70
¢ f 01
ft .70
[ f 01
P(J=true|A) A | P(M=true|A)
t .90 t .70
05 71 o

Figure 13.2 A typical Bayesian network, showing both the topology and the conditional
probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary,
Earthquake, Alarm, JohnCalls, and MaryCalls, respectively.



Inference

Denote observed data with shaded nodes,

e Y1 =1 Yo =y

e.g. C =flu, Y1 =fever, Y2 = cough, yl=y2=True

@ @ Infer latent variable C via Bayes’ rule:

p(e)p(y1 | c)p(y2 | ¢)
p(y1, ?/2)

p(C ‘ y17y2) —

* This is (obviously) a simple example
* Models and inference task can get really complicated
 But the fundamental concepts and approach are the same



Bayes’ Rule

Posterior represents all uncertainty after observing data...

likelihood function

prior probability for the parameters
p(c)ply | ¢)
plcly) =

/ p(y)\
marginal likelihood
or: evidence

or: partition function
or: normalizer

posterior probability



Discriminative vs Generative modeling

Observations

Discriminative model: ot Parameters
» For supervised learning te | @ }
* Only models P(y | x,0) -- i.e. doesn’t model data x /“,/ 0
* Recall linear regression: y | x; 0 ~ N(x'8,52) TN
* Logistic regression: y | x; 8 ~ Bernoulli(a(x"8)) ' @

I o

Unknowns
Generative model:
* Models everything including data: P(k,y) = P(k)P(y | k, 8) 5o
* e.g., Gaussian mixture model (GMM) ) -¢+ﬂ—o 0
* 0 = (Th, Uiy i) ie=1 - 0 ©
« k ~ Categorical(m) (hidden), i.e. P(k = 1) = m; °-ci;/—(3o
* ¥k~ NQu, Zg)




(Aside) Categorical Distribution

Distribution on integer-valued RV X € {1,..., K} ‘
(1, I[fxr=1 g
Ty,  Ifx =2 0

\TK e =K

Equivalently,
p(X =2) =L, " or p(X =a) =3 Iz =k) m

Can also represent X as one-hot binary vector,

X €{0,1}* where Y, ,Xp=1 then pX ==1)=][[0, 7"



Probabilistic modeling: systematic approach for ML

* The recipe:

1. Model how the data is generated by probabilistic models, but with
parameters unspecified (modeling assumption / generative story®

2. (Training) Learn the model parameter 8

3. (Test) Make prediction / decision based on the learned model "
P(z; 0) <

probabilistic
model

training data
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Learning / Training

Y, Model random data with hyperparameters 6 .
Sometimes we use:
Yy~ p(?/ ’ ‘9) p(y; 0)

Given training data:
n  i.d.d.
{yz' i—1 p(y ‘ 9)
Learn parameters, e.g. via maximum likelihood estimation:

gMLE _ arg max log p(yl7 e, Un, | (9) We will talk more
6 about MLE in

. . ' k
Other estimators are possible: kb
« Maximum a posteriori (MAP)
« Minimum mean squared error (MMSE)
* Etc.



Likelihood (Intuitively)

Suppose we observe N data points from a Gaussian
model and wish to estimate model parameters...

High Low
Likelihood Likelihood (mean)

4.0 1
35
3.0 1
25 1
g 201
15 A
10 A
05 1

00 -

Low
Likelihood (variance)

Likelihood Principle Given a statistical model, the likelihood function
describes all evidence of a parameter that is contained in the data.




Likelihood Function

Suppose z; ~ p(zx;0), then what is the joint probability over N
Independent identically distributed (iid) observations z1,...,zn?

N
1=1
» We call this the likelihood function, often denoted L (6)

* |t Is a function of the parameter 6, the data are fixed
* Measures how well parameter ¢ describes data (goodness of fit)

How could we use this to estimate a parameter §?



Maximum Likelihood

Maximum Likelihood Estimator (MLE) as the name suggests

maximizes the likelihood function. -
\ flz) == sm(.i J—I—l

2 ‘}'31]

A | A =(-22!
PME = argmax Ly (0) = | [ p(ei0) ¥
).
Question How do we find the MLE? /
0]
Answer Remember calculus... to maximize f(8): * 7' | '
'(=2) = —5.99
; ; Approach
Unigque solution f——, o of
Ye » Compute derivative <
« Set to zero and solve
Is f(8) concave? | d _(  uLE
No Gradient-based| sl have to compute
optimization derivative...




Maximum LI

kelihood

Maximizing log-likelihood makes the math easier (as we will see) and
doesn’t change the answer (logarithm is an increasing function)

OMLE — arg max log Ly

0

Derivative Is a linear operator so,

N

log Ln(0) = Z

1=1

d

do

d

I i
-3 og p(x;0)

One term per data point
Can be computed in parallel
(big data)

(0) = Z log p(z;; 0)

MLE

= Normal Likelihood
— Normal Log-Likelinood

Cw, 108N

| | |
Ll e = =] = P Ll iy




Probabilistic modeling: systematic approach for ML

* The recipe:

1. Model how the data is generated by probabilistic models, but with
parameters unspecified (modeling assumption / generative story®

2. (Training) Learn the model parameter 8

3. (Test) Make prediction / decision based on the learned model "
P(z; 0) <

probabilistic
model

training data
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Example |: Barbershop

Suppose you go to a barbershop at every last Friday of the month. You want to be
able to predict the waiting time. You have collected 12 data points (i.e., how long it
took to be served) from last year: S = {x4, ..., X2}

* 1. Modeling assumption: x; ~ Gaussian distribution N(u, 1)

. I _ (e=p)?
p(x,,u)—mexp( 2 )

» Observation: this distribution has mean u

Is this a generative or discriminative model? Generative

2. Training: find the MLE /i from data S

e (2.1) write down the neg. log likelihood of the sample
Lo(w) = —InP(xy, o, X3 1) = 12 InV271 +% 1210 — p)?



Example |: barbershop (cont’'d)

2. Find the MLE /i from data S

* (2.2) compute the first derivative, set it to 0, solve for 1

(be sure to check convexity)
Ln(W) = %20 — ) = 0> p =

X1+:X12

Sample Mean
12

3. The learned model N(4, 1) is yours!
- Simple prediction: e.qg., predict the next wait time by Ex._ g 1)[X]

X1+:Xq12

 whichis i = =

4. (Optional: Model Checking) Generate some data... Does it look realistic?



Recall: Categorical Distribution

Distribution on integer-valued RV X € {1,..., K} ‘
(1, I[fxr=1 g
Ty,  Ifx =2 0

P(X =x) =«
\TK e =K
Equivalently,
p(X =2) =T, " or p(X =a) =3 Lz =k) - m
Can also represent X as one-hot binary vector, (1,0,...,0)/.../(0,0,...,1)

X €{0,1}* where Zle Xr=1 then pX=2)= Hle e



Example Il: balls from a bin

Data S = {y;}I-,, where y; € {1, ..., C}
y; = the color of i-th ball drawn randomly from a bin (with replacement)

]

1. Generative Story Probability simplex
y ~ Categorical(w), where m = (mq, ..., ) EA*" Y (m, = 0and m; + -+ o = 1)

pyim) =, (=15, m0=7)

2. Training
(2.1) L,(m) = —In P(yq1, ..., Yy @) = X7 —In My, = — gzlnc Inm,, / >
where n, = #{iy; = ¢} = XL, I(y; = ¢)

Ex: S$S={1,3,2,1,1,3}

30



Example Il (Cont’'d)

2. Training
(2.2) minimize__ c-1 L, (1) = — 251 n¢ In 7,

Constrained maximization problem; solve by Lagrange multipliers

C C

0 Z 1 p z 1 B _1=0> R
—| =) n.Inn,. — T, — = ——— )= T, = ——
an C C C T[C C A

c=1 c=1

Combined with the constraint that 7; + -+ 7, = 1 = fi, = % for all ¢

3. Test predict label argmax . P(y = c; ) = argmax.7t,

31



* Probabilistic Graphical Models

» Case study: Naive Bayes



What is the factorization of P(a,b,c)?



p(a,b,c) = p(a)p(b)p(c)



Are a and b independent (a L b)?

O

p(a,b,c) = p(a)p(b)p(c)



p(a,b,c) = p(a)p(bla)p(c|a,b)

C

Note there are no conditional independencies



Bayes net encodes conditional independence

Isalb|lc 7



Bayes net encodes conditional independence

C

albl|c

p(a, b,c) = p(c)p(a‘c) p(b‘ c) (what the graph represents in general)
p(a?b c) = p(a‘c)p(b‘c) (with ¢ observed)

This is the definition of a _L b‘ c
Age

N

L] ]
Foot Size Literacy Score




Shading & Plate Notation

Convention: Shaded nodes are observed, open nodes are latent/nidden/unobserved

Y . Features X are Y O

conditionally
Independent,
given'Y

Plates denote
replication of
random variables

X1 X9 X3 Xy

p(y,x) = p(y) H p(z;y)

Jj=1



Nalve Bayes for supervised learning

« Motivation: supervised learning for classification
* high-dimensional x = (x(1), ..., x(F)), modeling P(x | y) can be tricky
* Ingeneral, P(x |y)=P(x(1) |y)-P(x(2) | x(1),y) - ... P(x(F) | x(1), ..., x(F — 1),y)

« A modeling assumption: x(1), ..., x(F) are conditionally independent given y
« Equivalently P(x |ly) =P(x(1)|y) - ..P(x(F) ly)

) /(%J N | & ] : @“
Lo f

Naive Bayes Model




Nalve Bayes: binary-valued features

Training Data S = {(x;, y;)}~1 , x; € {0,1}F y; € {0,1}

Ex: spam filtering

__

Email 1
Email 2 1 1 0 0 1
Email 3 1 0 0 0 1

Generative Story
y ~ Bernoulli(m); for all j € [F], x(j) | y = ¢ ~ Bernoulli(d_ ;)
#parameters = 1 + 2F

“

Class 0 (nonspam)
Class 1 (spam) 911 012 913 014

41



Nalve Bayes: binary-valued features

Training Data S = {(x;, y;)}~ 1, x; € {0,1}F y; € {0,1}
Generative Story
y ~ Bernoulli(r); for all j € [F], x(j) | y = ¢ ~ Bernoulli(6_ ;)

Likelihood only related to 6, ;’s
#parameters = 1 + 2F @ ony 0,

Training
maXTL’,Q Z?:l ln P(xli yl’ T, 6) La;-\ﬁ\ /
= MaXgq g Z?:l In P(yi; T[) + Z?=1 In P(XL | Vi, 0) 7omnf%

= MaXpg Li=1 1N P (Vi3 70) + Xy =0 I PCx; 1 y350) + Xy =1 In P(x; | 35 6)

Only related tor  Only related to 6y;’'s Only related to 6,;’s

=> The maximizing =, {6,,},{6,;} can be obtained separately!

42



* Training data

Example

-

Emailll O
Email2 1
Emaill3 1

 Contributions to log-likelihood
. |Fee  [Offer

Email 1
Email 2
Email 3

1 0 0 1
0 0 0 1

Only related to 6 ;’s

| In (1 — 6’0,1) In (1 — 90,2) In (90,3) In (90,4)

In (6, 1)
In (6,1)

In (0;,) In(1—-6;3) In(1—0;,)
In(1-6;,) In(1—-06,3) In(1—06,4)

Only related to 60, ;’s

In(1-m)

Inm

Inm

1

Only related to =



Nalve Bayes: binary-valued features

Training Data S = {(x;, y;)}~ 1, x; € {0,1}F y; € {0,1}
Generative Story
y ~ Bernoulli(r); for all j € [F], x(j) | y = ¢ ~ Bernoulli(6 ;)
#parameters = 1 + 2F
Training

Optimal : max, X.i=; In P(y;; m) = max, ngln(1l — m)+ nyIn(m)

In (1 —m)
:>ﬁ' :ﬁ
n In
In

|

Only related to =



Nalve Bayes: binary-valued features (cont'd)

By the Naive Bayes modeling assumption,

: — 3 e iy .
ggﬂ% Zi:yizlln P(x; 1y;0) = {15115,11?}4 Zj:lIZi:yi=OlnP(xl(]) | Vi; 91,1) ‘

Example: 1
Only related to 6, ;

]I'.I. {-E_L]_:} II'.I (EL:] ]I'.I. {J. — Hllg} II'.I (1 — -El_]_.q_}
In(6;,) In(1-6;2) In(1-63) In(1-6,4)

/ \

Only related to 68,; Only related to 64,

Again, can optimize each 6, ; separately,

argmax Zi:yi=1, (=106 + Zi:yi=1, x;(j)=0 10 (1-064;)
0,j
. oA #{i:y;=1,x;(j)=1} . . ~ #{i: y;j=0,x;(j)=1} .
- Solution: 8, ; = ™t y#{i:yilej} ) j=1,..,F;similarly 8, ; = 2 w0 ) =1

) nun

, F

45



Training naive Bayes model: extension to importance-weighted dataset

* What if we have duplicate examples in the training data?

I e K

Emaill O
Email2 1 1 0 0 1
Email3 O 0 1 1 0

 Better to represent it as an importance Weighted dataset

I G A

Emaill O

Email2 1 1 0 0 1 1.0

* In general, can allow the weights to be non-integers



Training naive Bayes model: extension to importance-weighted dataset

* How to perform training on a weighted dataset?
» Weighted MLE:max, g >.i=, w; In P(x;, y;; m, 8),
* w;: weight for example i
» Can solve MLE with the same observations as before

* Optimal m:
P Wi _ total weight ofwl-'s withy;=1 Email1 0 0 1 1 0 2.0
w total weight

Email2 1 1 0 0 1 1.0

» Optimal 8; ;'s:

. é __ total weight ofwl-'s withy;=1 & x;(j)=1
1,j —

total weight of w;s with y;=1
» Generalizes the unweighted setting



Nalve Bayes: binary-valued features (cont'd)

* Test Given T, {éc,j}, and test example x, predict its label y(x)

__

Test Email x O y(x)

« Example: 7 = 0.5,

_

Class 0 (nonspam) 0.01 0.03
Class 1 (spam) 0.1 0.2 0.1 0.001

* Feature j Is useful If 8, ; and 6, ; differs a lot
* 0y,; < 0, ; =>feature j Is positively correlated with label y



Nalve Bayes: binary-valued features (cont'd)

Test Given 1, {8, ;}, Bayes optimal classifier

feo(x) = argmax,, P(x,y; 1, {@C,j}) = argmax,, log P(x, y; T, {@C,j})

* log P(x,y = 0;7, {6,;}) = In (1 — ) + Xj_; In P(x(j) | y; 6, ;)

+ Similarly, log P(x,y = 1;, {8 ;}) = In(m) + Xf_;In (1 — 8, ;) + £, x(j) In~ 9”

« Example:

=In(1—-n)+ Zleln (1 — HOJ-)I(x(j) =0)+1In (Hoj)l(x(j) =1)
=In(1— 1) + X7y In (1 = 6p) + Ty x() In —2-

___

Test Email x 0
log P(x,y=0) In(1 —61) |n(1 — 60,2) |n(90,3) |n(00'4) In(1 —m)
log P(x,y=1) In(1-6;1) In(1—-0652) In(613) In(61,4) In(7)

49



Nalve Bayes: binary-valued features (cont'd)

Test Given #, {0, ;}, Bayes optimal classifier

fro(x) = argmax,, P(x,y; 1, {@C,j}) = argmax,, log P(x, y; T, {@C,j})

« Therefore, fzo(x) =1
slog P(x,y = 1;#,{6.,}) =log P(x,y = 0; &, {6, ;})

1-0 0 Iy,
<:>1n( )+2 (1_§(1)21)+2 1x(])|(ln Lj —1n42 >0
l |

—91] 1—00']'

b W(i)
« Therefore, in this setting, Bayes classifier is linear

-

Class 0 (nonspam) 0.01 0.03
Class 1 (spam) 0.1 0.2 0.1 0.001

50



Nalve Bayes: Categorical-valued features

Data S = {(x;, ¥}z x; € [W]* yi €{0,1}

Generative story e terseen T
y ~ Bernoulli(r); for all j € [F], x(j) | y = ¢ ~ Categorical(8,) (8, € AV™1)
#parameters = 1 + 2IW

Note: in this example, 6, shared across all features! Only related to 6, o v =N
Example:
P -m Word 4_| Spam?
Email 1 IS 0
Email 2 you offer discount »Only related to
Email 3 |1 want to offer 1
Training Only related to 6,

Similar to previous example, optimal r, optimal 8,, optimal 8; can be found separately,
by maximizing the respective part of the likelihood function (exercise)
Optimal = same as previous example 51



Nailve Bayes: Discrete features (cont’'d)

Only related to 6; |,

Training -mmﬁ
0

Optimal 4,.: Email 1 [Hello  mv

Max J.;.y,=o N P(x; | yi; 60) = HbaXZ =1 2i:y;=0 10 P(x; () | ¥i; 60)

0
_mBaXZ 12 1213/ OI(xL(])_W)IHHOW
= max ¥y In 0o, #{(0 )1 yi = 0,2:() = w}

<43 _ #HG):yi=cxi()=w}
=> e = #{i: y;=C}XF

Test
Bayes optimal classification rule with (#, 8,, 8,) (exercise)

52



Summary

 Probabilistic machine learning recipe
» Step 1. Modeling
« Step 2. Training
« Step 3. Test




Summary

A Bayes Network expresses a unique probability factorization:

I3

p(z) = || p(zs | zpags))
@ @ sey |—> Parents of node s

Inference is performed by Bayes’ rule (posterior distribution):

e p(c)p(y1 | ¢)p(y2 | c) G

p(c ’ ylayZ) —
p(y1,y2)




Summary

Hyperparameters must be estimated (e.g. Maximum Likelihood):

0

o¥E = argmax log p(y1. - -, yn | 0)

High Low Low
Likelihood Likelihood (mean) Likelihood (variance)




YO

Summary

Naive Bayes classifier assumes features are conditionally
Independent given class -

x(j) L (x(l), ox(—1),x(+ 1), ...,x(D)) |y

Joint distribution factorizes as:

F
pGy) = | [pa() 1)
j=1

Allows easier fitting of hyperparameters for class conditional
distributions (they can be fit independently of each other)



Next lecture

* Latent variables and Expectation-Maximization (EM) Algorithm

* Reading: CIML Chap. 16






Summary

Fundamental rules of Probabillity:

- Law of total probability: p(Y) = >, p(Y, X = )
Probability chain rule: P p(Y)

« Conditional probability: (X,Y) = p(Y)p(X | Y)

Independence of Random Variables:
« Two RVs are independent if: p(X =2,Y =y) = p(X =2x)p(Y =y)
« Or:p(X | Y) = p(X)
* They are conditionally independent If:

pX=aY=y|Z=z2)=pX=a|Z=2)pY =y|Z=2)
- Or: p(X |Y,Z)=p(X | 2)



Administrivia

 Homework submission
* Make sure questions are answered in PDF
« Match pages to questions
* Put code in PDF (relevant parts of code at least)
* Doublecheck your submission

* Midterm Exam
* Thursday 10/12
* No coding
* Probably closed-book



Maximum Likelihood

[ Source: Wasserman, L. 2004 ]

Example Suppose we have N coin
tosses with X1, ..., X,, ~ Bernoulli(p) but
we don’'t know the coin bias p. The

likelihood function Is,

En(p) — H 561(1 T )1 i (1 o ) -0 0.0
=1 Likelihood function for Bernoulli
with n=20 and >, z; = 12 heads

2

]
L
1

where S =) . xz;. The log-likelihood is,
log L,,(p) = Slogp + (n — S5)log(1 — p)

Set the derivative of log L, (p) to zero and solve
Maximum likelihood is

AMLE S/?’L — E X equivalent to sample
mean in Bernoulli



Maximum Likelihood

Maximum Likelihood Estimator (MLE) as the name suggests,
maximizes the likelihood function.

AMLE _ _ ;
7" = argmax Ly (0) = Hp(il?u 0)

Intuition: find model @ that is best supported by data



(Aside) Categorical Distribution

Distribution on integer-valued RV X € {1,..., K}

with parameter p(X = k) = m;, and Kroenecker delta:

1, X =k
(X =k) = { 0, Otherwise

Can also represent X as one-hot binary vector,
X e{0,1}¥ where Y  X,=1 then p(X)=][, "



Nalve Bayes for supervised learning

Motivation: supervised learning for classification
high-dimensional x = (x(1), ..., x(F)), modeling P(x | y) can be tricky
Ingeneral, P(x | y) =P(x(1D) |y) -P(x(2) | x(1),y) - ... P(x(F) | x(1), ..., x(F — 1),y)

A modeling assumption: x(1), ..., x(F) are conditionally independent given y
l.e. for all i 5 v Bayen ol

x() L (x(), ., x@ =1, x(@+ 1), .., x(F)) | y

(Conditional independence notation: A L B | C) "" .1.‘.,:'.: )
Equivalently P(x | y) = P(x(1) ly) - .. P(x(F) | y) {i@‘;

R 5
K/ég:/ [ CD//



Example: Class Preference Prediction

Define the labeled training dataset S = {(x;, y;)}i%4

To make this a binary
classification we set
“Like” = {+2,+1,0}
“Not Like” = {-1,-2}

Features

Feature
Values

Labels

Data Point

—Ratimg=P»Easy? AI? Sys? Thy? Morning?
+2 y y n y n
+2 y y n y n
cheid > n y n n n
+2 n n n y n
+2 n y y n y
+1 y y n n n
+1 y y n y n
+1 n y n y n
0 n n n n y
0 y n n y y
0 n y n y n
0 Y Y y y Y
-1 y y y n y
-1 n n y y n
-1 n n y n y
-1 y n y n y
-2 n n y y n
-2 n y y n y

»I -2 y n y n n I
-2 y n y n y
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Example: spam filtering

Data:

__ <
Email 1 .\vf\,
Email 2 0 0 1 1 0

Email 3 1 0 0 0 1

Model parameters:

T = (7o, T4)

“_

Class 0 (nonspam)
Class 1 911 912 013 014



Nalve Bayes: binary-valued features

Training Data S = {(x;, y;)}~ 1, x; € {0,1}F y; € {0,1}
Generative Story
y ~ Bernoulli(r); for all j € [F], x(j) | y = ¢ ~ Bernoulli(6 ;)
#parameters = 1 + 2F

Training
Optimal 7: max; )., In P(y;; m) = max, nyln(1l — n)+ nyIn(n) => 7 = %
ranng 2t § S eifrood orify"felated 16} ;s

1 Generative Story
H ow abo Ut 0 ptl m al {HO] } y {01] } ? y ~ Bernoulli(r); for all j €ffF], x(j) | y = ¢ ~ Blmoum(aw)l
#parameters = 1+ 2F
Training
Optimal m: max;, Y1 In P(y; ©) = max;, ngln(1 - m)+ nyIn(m) => fi = 1—1

How about optimal {8}, {8:;}?



Nalve Bayes: binary-valued features (cont'd)

By the Naive Bayes modeling assumption,
In P(x; | y;;6) = max %7 ]‘Z;’:m:gln P(x;() | yis 90.,-)‘

max Y.i...
(60,5 Y0 (60,7}
l fout Likelihood only related to 6
N -
Only related to 6; E Yo
P
Again, can optimize each 6, ; separately, " gy
ot '
arg;r.lax Zim:o, xi(j)=1 In 6, ; + Zi:yi=0, x:1(j)=0 In(1—6y;) "

']

» Solution: 8, ; = all ?{lixlg) U i=1,. F

 Similarly, 91] #iyi=1, ()= 1}
Hiyi=1) ﬁ
Emaill O
Email2 1 1 0 0 :
Email3 1 0 0 0 1
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Nailve Bayes: Discrete (Categorical-valued) features

Data § = {(x;, ¥i)}i=1 x; € [W]* y; €{0,1}
Generative story

y ~ Bernoulli(m); fc-

#parameters=1+ Emaill O

Note: in this examp Email2 1 1 0 0 1
Hello, My car is stuck on the highway, it's Important
| wanted to have some information on yo Not Important
Training

Fout Likelihood related to 6,
Similar to previous example, optimal z, optimal 8,, optimal 8, can be

found separately,

by maximizing the respective part of the likelihood function (exercise) 10319\
Optimal = same as previous example ot




Nalve Bayes: Discrete features (cont’'d)

fout Likeljhood related to 6,

Training
Optimal 4,.:
max Y., —oln P(x; | y;;6o) = r%aX27=1Zi;yi=oln P(x;()) | v;;600)
0

6o
- r%gxzyvlﬂ Zf=1 2iy=0l(x; () = w)In by,

= max ¥y In 0o, #{(0 )1 yi = 0,2:() = w}

<43 _ #HG):yi=cxi()=w}
=> e = #{i: y;=C}XF

Exercise: how to extend this to variable-length x;’s?

I?DMB

Test
Bayes optimal classification rule with (7, 8,,8,) (exercise)
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