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Probabilistic modeling: systematic approach for ML

• The recipe:
1. Model how the data is generated by probabilistic models, but with 
parameters unspecified (modeling assumption / generative story)

• Each example 𝑧 ∼ 𝑃(𝑧; 𝜃) for some 𝜃 ∈ Θ

• For 𝑧 = (𝑥, 𝑦) => supervised learning

• For 𝑧 = 𝑥 => unsupervised learning

2. (Training) Learn the model parameter ෠𝜃 

• Important example: maximum likelihood estimation (MLE), i.e., 
maximize𝜃∈Θ log 𝑃(𝑧1, … , 𝑧𝑛; 𝜃)

3. (Test) Make prediction / decision based on the learned model 
𝑃(𝑧; ෠𝜃) 

• Important example: predict using the Bayes classifier of 
𝑃(𝑧; ෠𝜃) (for supervised learning)
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Probabilistic modeling: systematic approach for ML

• The recipe:
1. Model how the data is generated by probabilistic models, but with 
parameters unspecified (modeling assumption / generative story)

2. (Training) Learn the model parameter ෠𝜃 

3. (Test) Make prediction / decision based on the learned model 
𝑃(𝑧; ෠𝜃) 
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Probabilistic modeling (cont’d)

• Why probabilistic modeling?
• Right thing to do if the model is correct

• If not…
• “All models are wrong, but some are useful” -- George Box

• Interpretability

• A view taken by classical statistics 
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Graphical Models

[Source: Erik Sudderth, PhD Thesis]

Bayes Network Factor Graph Markov Random Field

A variety of graphical models can represent the same 
probability distribution

Undirected ModelsDirected Models
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From Probabilities to Pictures

A probabilistic graphical model allows us to pictorially represent 
a probability distribution

Probability Model:
Graphical Model:

• Conditional distribution of each RV is dependent on its parent nodes in 
the graph

• Intuition: arrows may encode causal relationship (e.g. x1=smoking, 
x2=exercise, x3=cancer)



Directed Graphical Models

Directed models are generative models…

…tells how data are generated (called generative story; ancestral sampling)

Step 1 Sample root node:

Step 2 Sample children, given sample of parent (likelihood):

c

x2x1

A graph induces an ordered factorization of the 

joint distribution



Probability Chain Rule

Recall the probability chain rule says that we can decompose 
any joint distribution as a product of conditionals….

Valid for any ordering of the random variables…

For a collection of N RVs and any permutation   : 



Conditional Independence

Recall two RVs     and    are conditionally 
independent given     (or                   ) iff:

Idea Apply chain rule with ordering that 
exploits conditional independencies to 

simplify the terms

Ex. Suppose                     and                          then:

an ordered factorization of the joint 
distribution induces a directed acyclic 
graph (DAG)



General Directed Graphs

Def. A directed graph is a graph with edges               (arcs) 
connecting parent vertex           to a child vertex           

Def. Parents of vertex          are given by the 
set of nodes with arcs pointing to   ,

Children of          are given by the set,

Ancestors are parents-of-parents.  
Descendants are children-of-children.



Directed PGM = Bayes Network

• Model factors are normalized conditional distributions

• Locally normalized factors yield globally normalized joint probability

Directed acyclic graph (DAG) ⇔ factorized form of joint probability

Parents of node s

Each factor has a node; conditioning relationship represented by edge



Bayes network: A real-world example 

• Joint distribution = graph structure + conditional probability table



Inference

Denote observed data with shaded nodes,

C

Y2Y1 Infer latent variable C via Bayes’ rule:

• This is (obviously) a simple example

• Models and inference task can get really complicated

• But the fundamental concepts and approach are the same

e.g. C = flu, Y1 = fever, Y2 = cough, y1=y2=True



Bayes’ Rule

likelihood function 

for the parametersprior probability

marginal likelihood
posterior probability

or: evidence

or: partition function

or: normalizer

Posterior represents all uncertainty after observing data…



Discriminative vs Generative modeling

Discriminative model:
• For supervised learning 

• Only models 𝑃 𝑦 𝑥, 𝜃  -- i.e. doesn’t model data x

• Recall linear regression: 𝑦 ∣ 𝑥; 𝜃 ∼ 𝑁(𝑥⊤𝜃, 𝜎2)

• Logistic regression: 𝑦 ∣ 𝑥; 𝜃 ∼ Bernoulli(𝜎(𝑥⊤𝜃))

Generative model:
• Models everything including data: 𝑃 𝑘, 𝑦 = 𝑃 𝑘 𝑃(𝑦 ∣ 𝑘, 𝜃)

• e.g., Gaussian mixture model (GMM)

• 𝜃 = 𝜋𝑘 , 𝜇𝑘, Σ𝑘 𝑘=1
𝐾

• 𝑘 ∼ Categorical(𝜋) (hidden), i.e. 𝑃 𝑘 = 𝑙 = 𝜋𝑙

• 𝑦 ∣ 𝑘 ∼ 𝑁(𝜇𝑘 , Σ𝑘)
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Unknowns

Parameters
Observations



(Aside) Categorical Distribution

Distribution on integer-valued RV

Can also represent X as one-hot binary vector,

or

where then

Equivalently,



Probabilistic modeling: systematic approach for ML

• The recipe:
1. Model how the data is generated by probabilistic models, but with 
parameters unspecified (modeling assumption / generative story)

2. (Training) Learn the model parameter ෠𝜃 

3. (Test) Make prediction / decision based on the learned model 
𝑃(𝑧; ෠𝜃) 
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Learning / Training

Model random data with hyperparameters   :

y2y1

Sometimes we use:

Given training data:

Learn parameters, e.g. via maximum likelihood estimation:

Other estimators are possible:
• Maximum a posteriori (MAP)

• Minimum mean squared error (MMSE)

• Etc.

We will talk more

about MLE in 

coming weeks



Likelihood (Intuitively)

Suppose we observe N data points from a Gaussian 
model and wish to estimate model parameters…

High
Likelihood

Low
Likelihood (mean)

Low
Likelihood (variance)

Likelihood Principle Given a statistical model, the likelihood function 
describes all evidence of a parameter that is contained in the data.



Likelihood Function

• We call this the likelihood function, often denoted 

• It is a function of the parameter   , the data are fixed

• Measures how well parameter    describes data (goodness of fit)

Suppose                   , then what is the joint probability over N 
independent identically distributed (iid) observations                 ?

How could we use this to estimate a parameter    ?



Maximum Likelihood

Maximum Likelihood Estimator (MLE) as the name suggests, 
maximizes the likelihood function.

Question How do we find the MLE?

Answer Remember calculus… to maximize 𝑓(𝜃): 

Is 𝑓(𝜃) concave?

Unique solution

Gradient-based
optimization

Yes

No

Approach

• Compute derivative

• Set to zero and solve

Still have to compute 
derivative…



Maximum Likelihood

Maximizing log-likelihood makes the math easier (as we will see) and 
doesn’t change the answer (logarithm is an increasing function)

Derivative is a linear operator so,

MLE

One term per data point

Can be computed in parallel 

(big data)



Probabilistic modeling: systematic approach for ML

• The recipe:
1. Model how the data is generated by probabilistic models, but with 
parameters unspecified (modeling assumption / generative story)

2. (Training) Learn the model parameter ෠𝜃 

3. (Test) Make prediction / decision based on the learned model 
𝑃(𝑧; ෠𝜃) 
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Example I: Barbershop

Suppose you go to a barbershop at every last Friday of the month. You want to be 
able to predict the waiting time. You have collected 12 data points (i.e., how long it 
took to be served) from last year: 𝑆 = {𝑥1, … , 𝑥12}

• 1. Modeling assumption: 𝑥𝑖 ∼ Gaussian distribution 𝑁(𝜇, 1)

• 𝑝 𝑥; 𝜇 =
1

2𝜋
exp −

𝑥−𝜇 2

2

• Observation: this distribution has mean 𝜇

• 2. Training: find the MLE Ƹ𝜇 from data S
• (2.1) write down the neg. log likelihood of the sample

    𝐿𝑛 𝜇 = − ln 𝑃 𝑥1, … , 𝑥𝑛; 𝜇 = 12 ln 2𝜋 +
1

2
σ𝑖=1

12 𝑥𝑖 − 𝜇 2

27

Is this a generative or discriminative model? Generative



Example I: barbershop (cont’d)

2. Find the MLE Ƹ𝜇 from data S
• (2.2) compute the first derivative, set it to 0, solve for 𝜆

   (be sure to check convexity)

    𝐿𝑛
′ 𝜇 = σ𝑖=1

12 (𝑥𝑖 − 𝜇) = 0 ⇒ 𝜇 =
𝑥1+⋯𝑥12
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3. The learned model 𝑁( Ƹ𝜇, 1) is yours!
• Simple prediction: e.g., predict the next wait time by 𝔼𝑋~𝑁(ෝ𝜇,1) 𝑋  

• which is ො𝜇 =
𝑥1+⋯𝑥12

12

4. (Optional: Model Checking) Generate some data... Does it look realistic?
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Recall: Categorical Distribution

Distribution on integer-valued RV

Can also represent X as one-hot binary vector,

or

where then

Equivalently,



Example II: balls from a bin

Data 𝑆 = 𝑦𝑖 𝑖=1
𝑛 , where 𝑦𝑖 ∈ {1, … , 𝐶}

𝑦𝑖 = the color of 𝑖-th ball drawn randomly from a bin (with replacement)

1. Generative Story

    𝑦 ∼ Categorical(𝜋), where 𝜋 = 𝜋1, … , 𝜋𝐶 ∈ Δ𝐶−1 (𝜋𝑐 ≥ 0 and 𝜋1 + ⋯ + 𝜋𝐶 = 1)

    𝑝 𝑦; 𝜋 = 𝜋𝑦 = ς𝑐=1
𝐶 𝜋𝑐

𝐼 𝑦=𝑐

2. Training

    (2.1) 𝐿𝑛 𝜋 = −ln 𝑃 𝑦1, … , 𝑦𝑛; 𝜋 = σ𝑖=1
𝑛 −ln 𝜋𝑦𝑖

= − σ𝑐=1
𝐶 𝑛𝑐  ln 𝜋𝑐, 

    where 𝑛𝑐 = # 𝑖: 𝑦𝑖 = 𝑐 = σ𝑖=1
𝑛 𝐼(𝑦𝑖 = 𝑐)
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Probability simplex

Ex: S = {1,3,2,1,1,3}



Example II (Cont’d)

2. Training
(2.2) minimize𝜋∈Δ𝐶−1  𝐿𝑛 𝜋 ≔ − σ𝑐=1

𝐶 𝑛𝑐 ln 𝜋𝑐

Constrained maximization problem; solve by Lagrange multipliers

𝜕

𝜕𝜋
− ෍

𝑐=1

𝐶

𝑛𝑐 ln 𝜋𝑐 − 𝜆 ෍

𝑐=1

𝐶

𝜋𝑐 − 1 = −
𝑛𝑐

𝜋𝑐
− 𝜆 = 0 ⇒ 𝜋𝑐 = −

𝑛𝑐

𝜆

  Combined with the constraint that 𝜋1 + ⋯ + 𝜋𝐶 = 1 ⇒ ො𝜋𝑐 =
𝑛𝑐

𝑛
, for all 𝑐

3. Test predict label argmax𝑐𝑃 𝑦 = 𝑐; ො𝜋 = argmax𝑐 ො𝜋𝑐
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Outline

• Probabilistic Graphical Models

• Case study: Naïve Bayes



a

What is the factorization of P(a,b,c)?



p(a,b,c) = p(a)p(b)p(c)

a



a

Are a and b independent (          )?

p(a,b,c) = p(a)p(b)p(c)



p(a,b,c) = p(a)p(b|a)p(c|a,b)

Note there are no conditional independencies



Bayes net encodes conditional independence



Bayes net encodes conditional independence



Shading & Plate Notation

Convention: Shaded nodes are observed, open nodes are latent/hidden/unobserved

Y

Xj

D

Plates denote 

replication of 

random variables

Features X are 

conditionally 

independent, 

given Y



Naïve Bayes for supervised learning

• Motivation: supervised learning for classification

• high-dimensional 𝑥 = (𝑥(1), … , 𝑥(𝐹)), modeling 𝑃(𝑥 ∣ 𝑦) can be tricky

• In general, 𝑃 𝑥 𝑦 = 𝑃 𝑥(1) 𝑦 ⋅ 𝑃 𝑥 2 𝑥 1 , 𝑦 ⋅ … ⋅ 𝑃(𝑥(𝐹) ∣ 𝑥(1), … , 𝑥(𝐹 − 1), 𝑦) 

• A modeling assumption: 𝑥(1), … , 𝑥(𝐹) are conditionally independent given 𝑦

•  Equivalently 𝑃 𝑥 𝑦 = 𝑃 𝑥(1) 𝑦 ⋅ … 𝑃(𝑥(𝐹) ∣ 𝑦)
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Naïve Bayes: binary-valued features

Training Data 𝑆 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛  ,                 𝑥𝑖 ∈ 0,1 𝐹                    𝑦𝑖 ∈ {0,1}

Generative Story

    𝑦 ∼ Bernoulli 𝜋 ; for all 𝑗 ∈ [𝐹], 𝑥 𝑗 ∣ 𝑦 = 𝑐 ∼ Bernoulli(𝜃𝑐,𝑗) 

    #parameters = 1 + 2𝐹 

41

Free Offer Lecture CS Spam?

Email 1 0 0 1 1 0

Email 2 1 1 0 0 1

Email 3 1 0 0 0 1

𝜽 Free Offer Lecture CS

Class 0 (nonspam) 𝜽𝟎𝟏 𝜽𝟎𝟐 𝜽𝟎𝟑 𝜽𝟎𝟒

Class 1 (spam) 𝜽𝟏𝟏 𝜽𝟏𝟐 𝜽𝟏𝟑 𝜽𝟏𝟒

Ex: spam filtering 



Naïve Bayes: binary-valued features

Training Data 𝑆 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛  ,                 𝑥𝑖 ∈ 0,1 𝐹                    𝑦𝑖 ∈ {0,1}

Generative Story

    𝑦 ∼ Bernoulli 𝜋 ; for all 𝑗 ∈ [𝐹], 𝑥 𝑗 ∣ 𝑦 = 𝑐 ∼ Bernoulli(𝜃𝑐,𝑗) 

    #parameters = 1 + 2𝐹 

Training

 max𝜋,𝜃 σ𝑖=1
𝑛 ln 𝑃 𝑥𝑖 , 𝑦𝑖; 𝜋, 𝜃

         = max𝜋,𝜃 σ𝑖=1
𝑛 ln 𝑃 𝑦𝑖; 𝜋 + σ𝑖=1

𝑛 ln 𝑃 𝑥𝑖 ∣ 𝑦𝑖; 𝜃

                    = max𝜋,𝜃 σ𝑖=1
𝑛 ln 𝑃 𝑦𝑖; 𝜋 + σ𝑖:𝑦𝑖=0 ln 𝑃 𝑥𝑖 ∣ 𝑦𝑖; 𝜃 +  σ𝑖:𝑦𝑖=1 ln 𝑃 𝑥𝑖 ∣ 𝑦𝑖; 𝜃

   

=> The maximizing 𝜋, 𝜃0𝑗 , 𝜃1𝑗  can be obtained separately!

42

Only related to 𝜋 Only related to 𝜃0𝑗’s Only related to 𝜃1𝑗’s 

Likelihood only related to 𝜃0,𝑗’s 



Example

• Training data

• Contributions to log-likelihood

Free Offer Lecture CS Spam?

Email 1 0 0 1 1 0

Email 2 1 1 0 0 1

Email 3 1 0 0 0 1

Free Offer Lecture CS Spam?

Email 1 ln (1 − 𝜃0,1) ln (1 − 𝜃0,2) ln (𝜃0,3) ln (𝜃0,4) ln (1 − 𝜋)

Email 2 ln (𝜃1,1) ln (𝜃1,2) ln (1 − 𝜃1,3) ln (1 − 𝜃1,4) ln 𝜋

Email 3 ln (𝜃1,1) ln (1 − 𝜃1,2) ln (1 − 𝜃1,3) ln (1 − 𝜃1,4) ln 𝜋

Only related to 𝜋 

Only related to 𝜃0,𝑗’s

Only related to 𝜃1,𝑗’s



Naïve Bayes: binary-valued features

Training Data 𝑆 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛  ,                 𝑥𝑖 ∈ 0,1 𝐹                    𝑦𝑖 ∈ {0,1}

Generative Story

    𝑦 ∼ Bernoulli 𝜋 ; for all 𝑗 ∈ [𝐹], 𝑥 𝑗 ∣ 𝑦 = 𝑐 ∼ Bernoulli(𝜃𝑐,𝑗) 

    #parameters = 1 + 2𝐹 

Training 

Optimal 𝜋: max𝜋 σ𝑖=1
𝑛 ln 𝑃 𝑦𝑖; 𝜋 = max𝜋 𝑛0ln(1 − 𝜋)+ 𝑛1ln 𝜋  

=> ො𝜋 =
𝑛1

𝑛
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Naïve Bayes: binary-valued features (cont’d)

By the Naïve Bayes modeling assumption,

    max
{𝜃1,𝑗} 

σ𝑖:𝑦𝑖=1 ln 𝑃 𝑥𝑖 ∣ 𝑦𝑖; 𝜃 = max
{𝜃1,𝑗} 

σ𝑗=1
𝐹 σ𝑖:𝑦𝑖=0 ln 𝑃 𝑥𝑖(𝑗) ∣ 𝑦𝑖; 𝜃1,𝑗

Example:  

45

Again, can optimize each 𝜃1,𝑗  separately,

 argmax
𝜃0,𝑗 

σ𝑖:𝑦𝑖=1, 𝑥𝑖 𝑗 =1 ln 𝜃1,𝑗 + σ𝑖:𝑦𝑖=1, 𝑥𝑖 𝑗 =0 ln (1 − 𝜃1,𝑗)

• Solution: ෠𝜃1,𝑗 =
#{𝑖: 𝑦𝑖=1, 𝑥𝑖 𝑗 =1}

#{𝑖:𝑦𝑖=1}
, 𝑗 = 1, … , 𝐹; similarly ෠𝜃0,𝑗 =

#{𝑖: 𝑦𝑖=0, 𝑥𝑖 𝑗 =1}

#{𝑖:𝑦𝑖=0}
, 𝑗 = 1, … , 𝐹

Only related to 𝜃1𝑗

Only related to 𝜃11 Only related to 𝜃12 …



Training naïve Bayes model: extension to importance-weighted dataset

• What if we have duplicate examples in the training data?

• Better to represent it as an importance weighted dataset 

• In general, can allow the weights to be non-integers

Free Offer Lecture CS Spam?

Email 1 0 0 1 1 0

Email 2 1 1 0 0 1

Email 3 0 0 1 1 0

Free Offer Lecture CS Spam? Weight

Email 1 0 0 1 1 0 2.0

Email 2 1 1 0 0 1 1.0



Free Offer Lecture CS Spam? Weight

Email 1 0 0 1 1 0 2.0

Email 2 1 1 0 0 1 1.0

Training naïve Bayes model: extension to importance-weighted dataset

• How to perform training on a weighted dataset?

• Weighted MLE:max𝜋,𝜃 σ𝑖=1
𝑛 𝑤𝑖  ln 𝑃 𝑥𝑖 , 𝑦𝑖; 𝜋, 𝜃 , 

• 𝑤𝑖: weight for example 𝑖

• Can solve MLE with the same observations as before

• Optimal 𝜋: 

• ො𝜋 =
𝑊1

𝑊
=

total weight of 𝑤𝑖
′s with y𝑖=1

total weight
 

• Optimal ෠𝜃𝑖,𝑗’s: 

• መ𝜃1,𝑗 =
total weight of 𝑤𝑖

′s with y𝑖=1 & 𝑥𝑖 𝑗 =1

total weight of 𝑤𝑖
′s with y𝑖=1

• Generalizes the unweighted setting



Naïve Bayes: binary-valued features (cont’d)

• Test Given ො𝜋, { ෠𝜃𝑐,𝑗}, and test example 𝑥, predict its label ො𝑦(𝑥)

• Example: ො𝜋 = 0.5, 

• Feature 𝑗 is useful if 𝜃0,𝑗 and 𝜃1,𝑗 differs a lot 

• 𝜃0,𝑗 < 𝜃1,𝑗 => feature 𝑗 is positively correlated with label 𝑦

Free Offer Lecture CS Spam?

Test Email x 0 0 1 1 ො𝑦(𝑥)

෡𝜽 Free Offer Lecture CS

Class 0 (nonspam) 𝟎. 𝟎𝟏 𝟎. 𝟎𝟑 𝟎. 𝟏 𝟎. 𝟏

Class 1 (spam) 𝟎. 𝟏 𝟎. 𝟐 𝟎. 𝟏 𝟎. 𝟎𝟎𝟏



Naïve Bayes: binary-valued features (cont’d)

Test Given ො𝜋, { ෠𝜃𝑐,𝑗}, Bayes optimal classifier 

           መ𝑓𝐵𝑂 𝑥 = argmax𝑦 𝑃(𝑥, 𝑦; ො𝜋, { ෠𝜃𝑐,𝑗}) = argmax𝑦 log 𝑃(𝑥, 𝑦; ො𝜋, { ෠𝜃𝑐,𝑗})

• log 𝑃(𝑥, 𝑦 = 0; 𝜋, {𝜃𝑐,𝑗}) = ln (1 − 𝜋) + σ𝑗=1
𝐹 ln 𝑃 𝑥 𝑗 ∣ 𝑦; 𝜃0,𝑗

                                         = ln (1 − 𝜋) + σ𝑗=1
𝐹 ln 1 − 𝜃0,𝑗 𝐼 𝑥 𝑗 = 0 + ln 𝜃0,𝑗 𝐼 𝑥 𝑗 = 1

                                         = ln(1 −  𝜋) + σ𝑗=1
𝐹 ln (1 − 𝜃0,𝑗) + σ𝑗=1

𝐹 𝑥(𝑗) ln
𝜃0,𝑗

1−𝜃0,𝑗

• Similarly, log 𝑃(𝑥, 𝑦 = 1; 𝜋, {𝜃𝑐,𝑗}) = ln(𝜋) + σ𝑗=1
𝐹 ln (1 − 𝜃1,𝑗) + σ𝑗=1

𝐹 𝑥(𝑗) ln
𝜃1,𝑗

1−𝜃1,𝑗

• Example: 
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Free Offer Lecture CS

Test Email x 0 0 1 1

log 𝑃(x,y=0) ln(1 − 𝜃0,1) ln(1 − 𝜃0,2) ln(𝜃0,3) ln(𝜃0,4) ln(1 − 𝜋)

log 𝑃(x,y=1) ln(1 − 𝜃1,1) ln(1 − 𝜃1,2) ln(𝜃1,3) ln(𝜃1,4) ln(𝜋)



Naïve Bayes: binary-valued features (cont’d)

Test Given ො𝜋, { ෠𝜃𝑐,𝑗}, Bayes optimal classifier 

           መ𝑓𝐵𝑂 𝑥 = argmax𝑦 𝑃(𝑥, 𝑦; ො𝜋, { ෠𝜃𝑐,𝑗}) = argmax𝑦 log 𝑃(𝑥, 𝑦; ො𝜋, { ෠𝜃𝑐,𝑗})

• Therefore, መ𝑓𝐵𝑂 𝑥 = 1 

⇔ log 𝑃(𝑥, 𝑦 = 1; ො𝜋, { ෠𝜃𝑐,𝑗}) ≥ log 𝑃(𝑥, 𝑦 = 0; ො𝜋, { ෠𝜃𝑐,𝑗})

⇔ ln
ෝ𝜋

1−ෝ𝜋
+ σ𝑗=1

𝐹 ln
1−෡𝜽1,𝑗

1−෡𝜃0,𝑗
+ σ𝑗=1

𝐹 𝑥 𝑗 ln
෡𝜃1,𝑗

1−෡𝜃1,𝑗
− ln

෡𝜃0,𝑗

1−෡𝜃0,𝑗
≥ 0

• Therefore, in this setting, Bayes classifier is linear
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𝑏 𝑤(𝑗)

𝜽 Free Offer Lecture CS

Class 0 (nonspam) 𝟎. 𝟎𝟏 𝟎. 𝟎𝟑 𝟎. 𝟏 𝟎. 𝟏

Class 1 (spam) 𝟎. 𝟏 𝟎. 𝟐 𝟎. 𝟏 𝟎. 𝟎𝟎𝟏



Naïve Bayes: Categorical-valued features

Data 𝑆 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛  ,                 𝑥𝑖 ∈ [𝑊]𝐹                    𝑦𝑖 ∈ {0,1}

Generative story

    𝑦 ∼ Bernoulli 𝜋 ; for all 𝑗 ∈ [𝐹], 𝑥 𝑗 ∣ 𝑦 = 𝑐 ∼ Categorical(𝜃𝑐)  (𝜃𝑐 ∈ Δ𝑊−1)

    #parameters = 1 + 2𝑊

    Note: in this example, 𝜃𝑐 shared across all features!

    Example:

Training

    Similar to previous example, optimal 𝜋, optimal 𝜃0, optimal 𝜃1 can be found separately,

    by maximizing the respective part of the likelihood function (exercise)

     Optimal 𝜋 same as previous example 51

Word 1 Word 2 Word 3 Word 4 Spam?

Email 1 Hello my car is 0

Email 2 Do you offer discount 1

Email 3 I want to offer 1

Only related to 𝜋 

Only related to 𝜃0

Only related to 𝜃1



Naïve Bayes: Discrete features (cont’d)

Training

    Optimal 𝜃𝑐: 

     max
𝜃0

 σ𝑖:𝑦𝑖=0 ln 𝑃 𝑥𝑖 ∣ 𝑦𝑖; 𝜃0 = max
𝜃0

σ𝑗=1
𝐹 σ𝑖:𝑦𝑖=0 ln 𝑃 𝑥𝑖(𝑗) ∣ 𝑦𝑖; 𝜃0

              = max
𝜃0

σ𝑤=1
𝑊 σ𝑗=1

𝐹 σ𝑖:𝑦𝑖=0 𝐼(𝑥𝑖 𝑗 = 𝑤) ln 𝜃0,𝑤

            = max
𝜃0

σ𝑤=1
𝑊 ln 𝜃0,𝑤 #{(𝑖, 𝑗): 𝑦𝑖 = 0, 𝑥𝑖 𝑗 = 𝑤}

     => መ𝜃𝑐,𝑤 =
#{(𝑖,𝑗): 𝑦𝑖=𝑐,𝑥𝑖 𝑗 =𝑤}

#{𝑖: 𝑦𝑖=𝑐}×𝐹

Test 

Bayes optimal classification rule with ( ො𝜋, መ𝜃0, መ𝜃1) (exercise)
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Summary

• Probabilistic machine learning recipe
• Step 1. Modeling 

• Step 2. Training

• Step 3. Test



Summary

A Bayes Network expresses a unique probability factorization:

Parents of node s

Inference is performed by Bayes’ rule (posterior distribution):

c

y2y1

c

y2y1



Summary

Hyperparameters must be estimated (e.g. Maximum Likelihood):

y2y1

High
Likelihood

Low
Likelihood (mean)

Low
Likelihood (variance)



Summary

Naïve Bayes classifier assumes features are conditionally 
independent given class Y:

Y

Xj

D

𝑥(𝑗) ⫫ 𝑥 1 , … , 𝑥 𝑗 − 1 , 𝑥 𝑗 + 1 , … , 𝑥 𝐷 ∣ 𝑦

Joint distribution factorizes as:

𝑝 𝑥, 𝑦 = 𝑝 𝑦 ෑ

𝑗=1

𝐹

𝑝(𝑥 𝑗 ∣ 𝑦)

Allows easier fitting of hyperparameters for class conditional 
distributions (they can be fit independently of each other)



Next lecture

• Latent variables and Expectation-Maximization (EM) Algorithm 

• Reading: CIML Chap. 16



Backup



Summary

Fundamental rules of Probability:
• Law of total probability:

• Probability chain rule:

• Conditional probability: 

Independence of Random Variables:
• Two RVs are independent if:

• Or:

• They are conditionally independent if:

• Or: 



Administrivia

• Homework submission
• Make sure questions are answered in PDF

• Match pages to questions

• Put code in PDF (relevant parts of code at least)

• Doublecheck your submission

• Midterm Exam
• Thursday 10/12

• No coding

• Probably closed-book



Maximum Likelihood
[ Source: Wasserman, L. 2004 ]

Likelihood function for Bernoulli 
with n=20 and                  heads

Example Suppose we have N coin 
tosses with                                           but 
we don’t know the coin bias  .  The 
likelihood function is,

where                  .  The log-likelihood is,

Set the derivative of                  to zero and solve,

Maximum likelihood is 

equivalent to sample 

mean in Bernoulli



Maximum Likelihood

Maximum Likelihood Estimator (MLE) as the name suggests, 
maximizes the likelihood function.

Intuition: find model 𝜃 that is best supported by data 



(Aside) Categorical Distribution

Distribution on integer-valued RV

with parameter                         and Kroenecker delta:

Can also represent X as one-hot binary vector,

or

where then



Naïve Bayes for supervised learning

• Motivation: supervised learning for classification

• high-dimensional 𝑥 = (𝑥(1), … , 𝑥(𝐹)), modeling 𝑃(𝑥 ∣ 𝑦) can be tricky

• In general, 𝑃 𝑥 𝑦 = 𝑃 𝑥(1) 𝑦 ⋅ 𝑃 𝑥 2 𝑥 1 , 𝑦 ⋅ … ⋅ 𝑃(𝑥(𝐹) ∣ 𝑥(1), … , 𝑥(𝐹 − 1), 𝑦) 

• A modeling assumption: 𝑥(1), … , 𝑥(𝐹) are conditionally independent given 𝑦

    i.e. for all 𝑖 

                       𝑥(𝑖) ⫫ 𝑥 1 , … , 𝑥 𝑖 − 1 , 𝑥 𝑖 + 1 , … , 𝑥 𝐹 ∣ 𝑦

    (Conditional independence notation: 𝐴 ⫫ 𝐵 ∣ 𝐶)

•  Equivalently 𝑃 𝑥 𝑦 = 𝑃 𝑥(1) 𝑦 ⋅ … 𝑃(𝑥(𝐹) ∣ 𝑦)

 

64



Example: Class Preference Prediction

Define the labeled training dataset 𝑆 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑚

65

Labels

Features

Feature

Values

Data Point

To make this a binary 

classification we set 

“Like” = {+2,+1,0}

“Not Like” = {-1,-2}



Example: spam filtering 

Free Offer Lecture CS Spam?

Email 1 1 1 0 0 1

Email 2 0 0 1 1 0

Email 3 1 0 0 0 1

𝜽 Free Offer Lecture CS

Class 0 (nonspam) 𝜽𝟎𝟏 𝜽𝟎𝟐 𝜽𝟎𝟑 𝜽𝟎𝟒

Class 1 𝜽𝟏𝟏 𝜽𝟏𝟐 𝜽𝟏𝟑 𝜽𝟏𝟒

Model parameters: 

𝜋 = (𝜋0, 𝜋1)

Data:



Naïve Bayes: binary-valued features

Training Data 𝑆 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛  ,                 𝑥𝑖 ∈ 0,1 𝐹                    𝑦𝑖 ∈ {0,1}

Generative Story

    𝑦 ∼ Bernoulli 𝜋 ; for all 𝑗 ∈ [𝐹], 𝑥 𝑗 ∣ 𝑦 = 𝑐 ∼ Bernoulli(𝜃𝑐,𝑗) 

    #parameters = 1 + 2𝐹 

Training 

Optimal 𝜋: max𝜋 σ𝑖=1
𝑛 ln 𝑃 𝑦𝑖; 𝜋 = max𝜋 𝑛0ln(1 − 𝜋)+ 𝑛1ln 𝜋  => ො𝜋 =

𝑛1

𝑛

How about optimal 𝜃0𝑗 , 𝜃1𝑗 ?
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Likelihood only related to 𝜃0,𝑗’s 



Free Offer Lecture CS Spam?

Email 1 0 0 1 1 0

Email 2 1 1 0 0 1

Email 3 1 0 0 0 1

Naïve Bayes: binary-valued features (cont’d)

By the Naïve Bayes modeling assumption,

    max
{𝜃0,𝑗} 

σ𝑖:𝑦𝑖=0 ln 𝑃 𝑥𝑖 ∣ 𝑦𝑖; 𝜃 = max
{𝜃0,𝑗} 

σ𝑗=1
𝐹 σ𝑖:𝑦𝑖=0 ln 𝑃 𝑥𝑖(𝑗) ∣ 𝑦𝑖; 𝜃0,𝑗

    

68

Likelihood only related to 𝜃0,𝑗 

Again, can optimize each 𝜃0,𝑗  separately,

 argmax
𝜃0,𝑗 

σ𝑖:𝑦𝑖=0, 𝑥𝑖 𝑗 =1 ln 𝜃0,𝑗 + σ𝑖:𝑦𝑖=0, 𝑥𝑖 𝑗 =0 ln (1 − 𝜃0,𝑗)

• Solution: ෠𝜃0,𝑗 =
#{𝑖: 𝑦𝑖=0, 𝑥𝑖 𝑗 =1}

#{𝑖:𝑦𝑖=0}
, 𝑗 = 1, … , 𝐹

• Similarly,   ෠𝜃1,𝑗 =
#{𝑖: 𝑦𝑖=1, 𝑥𝑖 𝑗 =1}

#{𝑖:𝑦𝑖=1}
, 𝑗 = 1, … , 𝐹

Only related to 𝜃0𝑗



Naïve Bayes: Discrete (Categorical-valued) features

Data 𝑆 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛  ,                 𝑥𝑖 ∈ [𝑊]𝐹                    𝑦𝑖 ∈ {0,1}

Generative story

    𝑦 ∼ Bernoulli 𝜋 ; for all 𝑗 ∈ [𝐹], 𝑥 𝑗 ∣ 𝑦 = 𝑐 ∼ Categorical(𝜃𝑐)  (𝜃𝑐 ∈ Δ𝑊−1)

    #parameters = 1 + 2𝑊

    Note: in this example, 𝜃𝑐 shared across all features!

    Example:

Training

    Similar to previous example, optimal 𝜋, optimal 𝜃0, optimal 𝜃1 can be 

    found separately,

    by maximizing the respective part of the likelihood function (exercise)

     Optimal 𝜋 same as previous example 69

Likelihood related to 𝜃0 

Free Offer Lecture CS Spam?

Email 1 0 0 1 1 0

Email 2 1 1 0 0 1

Email 3 1 0 0 0 1



Naïve Bayes: Discrete features (cont’d)

Training

    Optimal 𝜃𝑐: 

     max
𝜃0

 σ𝑖:𝑦𝑖=0 ln 𝑃 𝑥𝑖 ∣ 𝑦𝑖; 𝜃0 = max
𝜃0

σ𝑗=1
𝐹 σ𝑖:𝑦𝑖=0 ln 𝑃 𝑥𝑖(𝑗) ∣ 𝑦𝑖; 𝜃0

              = max
𝜃0

σ𝑤=1
𝑊 σ𝑗=1

𝐹 σ𝑖:𝑦𝑖=0 𝐼(𝑥𝑖 𝑗 = 𝑤) ln 𝜃0,𝑤

            = max
𝜃0

σ𝑤=1
𝑊 ln 𝜃0,𝑤 #{(𝑖, 𝑗): 𝑦𝑖 = 0, 𝑥𝑖 𝑗 = 𝑤}

     => መ𝜃𝑐,𝑤 =
#{(𝑖,𝑗): 𝑦𝑖=𝑐,𝑥𝑖 𝑗 =𝑤}

#{𝑖: 𝑦𝑖=𝑐}×𝐹

    Exercise: how to extend this to variable-length 𝑥𝑖 ’s?

Test 

Bayes optimal classification rule with ( ො𝜋, መ𝜃0, መ𝜃1) (exercise)
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Likelihood related to 𝜃0 
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