
CSC 580 Principles of Machine Learning

Unsupervised learning

Chicheng Zhang

Department of Computer Science

1





What is unsupervised learning?

• Uncovering structures in unlabeled data

• What can we expect to learn?

• Clustering: obtain partition of the data that are well-separated.

• can be viewed as a preliminary classification without predefined class labels.

• Component analysis: extract common components that compose data points.

• e.g., topic modeling given a set of articles: each article talks about a few topics => extract the set of 
topics that appears frequently.

• Usage

• As a summary of the data

• Exploratory data analysis: what are the patterns we can get even without labels?

• Often used as ‘preprocessing techniques’

• e.g., extract useful representation using principal component analysis (will be covered later)

3



Outline

• Clustering

• K-means clustering revisited

• Hierarchical clustering

• Principal Component Analysis (PCA)
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Clustering

• Input: 𝑘: the number of clusters (hyperparameter)

                𝑆 = {𝑥1, … , 𝑥𝑛}

• Output

• partition 𝐺𝑖 𝑖=1
𝑘    s.t. 𝑆 = ∪𝑖 𝐺𝑖  (disjoint union).

• often, we also obtain ‘centroids’

• Recall: in k-means clustering, how did we define centroid of a cluster 𝐺?

• Answer: average point 
σ𝑥∈𝐺 𝑥

𝐺
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Recap: K-means clustering [Lloyd’82]
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Input: 𝑘: num. of clusters, 𝑆 = {𝑥1, … , 𝑥𝑛}

[Initialize] Pick 𝑐1, … , 𝑐𝑘 as randomly selected points from 𝑆 (see next slides for alternatives)

For 𝑡 = 1,2, … , 𝑇:

• [Update cluster assignments] ∀𝑥 ∈ 𝑆,  𝑧𝑡(𝑥) = arg min
𝑗∈[𝑘]

𝑥 − 𝑐𝑗 2

• [Update centroids]      ∀𝑗 ∈ 𝑘 , 𝑐𝑗 ← average 𝑥 ∈ 𝑆: 𝑧𝑡 𝑥 = 𝑗  

• If t ≠ 1 AND 𝑧𝑡 𝑥 = 𝑧𝑡−1 𝑥 , ∀𝑥 ∈ 𝑆

break

Output: 𝑐1, … , 𝑐𝑘 and 𝑧𝑡 𝑥𝑖 𝑖∈[𝑛]

Notation: 𝑘 = {1,2, … , 𝑘}



Initialization
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Arbitrary/random initialization of 𝑐1 and 𝑐2



Iteration 1
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(A) update the cluster assignments. (B) Update the centroids {𝑐𝑗}



Iteration 2
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(A) update the cluster assignments. (B) Update the centroids {𝑐𝑗}



Iteration 3
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(A) update the cluster assignments. (B) Update the centroids {𝑐𝑗}



Iteration 4
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(A) update the cluster assignments. (B) Update the centroids {𝑐𝑗}



Clustering as compression

• Clustering can be viewed as a way to do compression

• Original dataset 𝑥1, … , 𝑥𝑛 

• Compressed representation: Ԧ𝑐 = (𝑐1, … , 𝑐𝑘), Ԧ𝑧 = (𝑧1, … , 𝑧𝑛) 

• Reconstructed dataset: 

    𝑐𝑧1
, … , 𝑐𝑧𝑛

• Is the compression lossless or lossy?

• Sometimes call clustering “quantization” -- rate-distortion theory in information theory 

• Reconstruction error for example 𝑥𝑖: 𝑐𝑧𝑖
− 𝑥𝑖 2

2

• Total reconstruction error: 𝑔 Ԧ𝑐, Ԧ𝑧 = σ𝑖=1
𝑛 𝑐𝑧𝑖

− 𝑥𝑖 2

2
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cluster centroids;
 each 𝑐𝑖 ∈ ℝ𝑑

cluster assignments; 
each 𝑧𝑖 ∈ {1, . . , 𝑘}



K-means: cost minimization perspective

• Lloyd’s algorithm minimizes reconstruction error by alternating minimization 

• For variables 

     Ԧ𝑐 ≔ 𝑐1, … , 𝑐𝑘 ,                                     Ԧ𝑧 ≔ 𝑧1, … , 𝑧𝑛

• Solve the following optimization problem: 

         min
Ԧ𝑐, Ԧ𝑧

 𝑔 Ԧ𝑐, Ԧ𝑧 ≔ σ𝑖=1
𝑛 𝑥𝑖 − 𝑐𝑧𝑖 2

2

• Lloyd’s algorithm: 

• For 𝑡 = 1,2, … , 𝑇:

• [Update cluster assignments] Ԧ𝑧𝑡 ← argmin Ԧ𝑧 𝑔 Ԧ𝑐𝑡−1, Ԧ𝑧

• [Update centroids] Ԧ𝑐𝑡 ← argmin Ԧ𝑐  𝑔 Ԧ𝑐, Ԧ𝑧𝑡

• Observation: objective function 𝑔 Ԧ𝑐𝑡 , Ԧ𝑧𝑡  decreases monotonically in t
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cluster centroids; each 𝑐𝑖 ∈ ℝ𝑑 cluster assignments; each 𝑧𝑖 ∈ {1, . . , 𝑘}



K-means: cost minimization perspective

• Observation: given any Ԧ𝑐, the Ԧ𝑧 that minimizes 𝑔 Ԧ𝑐, Ԧ𝑧 ≔ σ𝑖=1
𝑛 𝑥𝑖 − 𝑐𝑧𝑖 2

2
 satisfies that

• 𝑧𝑖 = argmin𝑗∈[𝑘] 𝑥𝑖 − 𝑐𝑗 2
, for every 𝑖

• which induces reconstruction error σ𝑖=1
𝑛 min

𝑗∈[𝑘]
𝑥𝑖 − 𝑐𝑗

2

2
=: 𝑓( Ԧ𝑐)

• We can also view optimizing reconstruction error as just finding k “centers” Ԧ𝑐 = (𝑐1, … , 𝑐𝑘) that 
minimizes

                                         𝑓 Ԧ𝑐 ≔ σ𝑖=1
𝑛 min

𝑗∈[𝑘]
𝑥𝑖 − 𝑐𝑗

2

2
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Issue 1: Unreliable solution

• You usually get different solutions every time you run.

• Standard practice: Run it 50 times and take the one that achieves the smallest objective function

• Recall: minimize
𝑐1,…,𝑐𝑘

𝑓 Ԧ𝑐 , where 𝑓 Ԧ𝑐 = σ𝑖=1
𝑛 min

𝑗∈ 𝑘
𝑥 − 𝑐𝑗 2

2

• Or, change the initialization (next slide)

• Idea: ensure that we pick a widespread 𝑐1, … , 𝑐𝑘
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Two alternative initializations

• Furthest-first traversal ⇒ Sequentially choose 𝑐𝑗 that are the farthest from the previously-chosen.

• Pick 𝑐1 ∈ {𝑥1, … , 𝑥𝑛} arbitrarily (or randomly)

• For 𝑗 = 2, … , 𝑘

• Pick 𝑐𝑗 ∈ ℝ𝑑 as a point in 𝑥1, … , 𝑥𝑛  that maximizes the squared distances to 𝑐1, … , 𝑐𝑗−1.

𝑐𝑗 = arg max
𝑖∈[𝑛]

min
𝑗′∈[𝑗−1]

𝑥𝑖 − 𝑐𝑗′
2

• 𝒌-means++ (Arthur and Vassilvitskii, 2007)

• Pick 𝑐1 ∈ {𝑥1, … , 𝑥𝑛} uniformly at random

• For 𝑗 = 2, … , 𝑘

• Define a distribution ∀𝑖 ∈ 𝑛 , ℙ 𝑐𝑗 = 𝑥𝑖 ∝ min
𝑗′∈[𝑗−1]

‖𝑥𝑖 − 𝑐𝑗′ ‖2
2

• Draw 𝑐𝑗  from the distribution above.
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More likely to choose 𝑥𝑖 that is farthest 
from already-chosen centroids.

=> has a mathematical guarantee that it will be better than an arbitrary starting point!



Issue 2: Choosing k

• 𝐿𝑘 = 𝑓(𝑐1, … , 𝑐𝑘) for 𝑐1, … , 𝑐𝑘 obtained by any k-means clustering algorithm

• Elbow method: see where you get saturation.

• Akaike information criterion (AIC): argmin𝑘
𝐿𝑘 + 2𝑘𝑑

• Bayesian information criterion (BIC): argmin𝑘
𝐿𝑘 + 𝑘𝑑 ⋅ log 𝑛

18https://medium.com/analytics-vidhya/how-to-determine-the-optimal-k-for-k-means-708505d204eb

Objective function 𝐿𝑘



Kernelizing K-means algorithm
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How to perform clustering with feature transformations 𝜙: 𝒳 → ℝ𝐷?

Input: 𝑘: num. of clusters, 𝑆 = {𝑥1, … , 𝑥𝑛}, kernel function 𝐾 with feature map 𝜙

Idea: perform clustering over ሚ𝑆 = {𝜙 𝑥1 , … , 𝜙 𝑥𝑛 }, without explicitly evaluating 𝜙

[Initialize] Pick 𝑐1, … , 𝑐𝑘 as randomly selected points from ሚ𝑆

For 𝑡 = 1,2, … , 𝑇

• [Assignments] ∀𝑥 ∈ 𝑆,  𝑧𝑡(𝑥) = arg min
𝑗∈[𝑘]

𝜙(𝑥) − 𝑐𝑗 2

2

• [Centroids]       ∀𝑗 ∈ 𝑘 , 𝑐𝑗 ← average 𝜙 𝑥 :  𝑥 ∈ 𝑆, 𝑧𝑡(𝑥)  = 𝑗  

Output: 𝑐1, … , 𝑐𝑘 and 𝑎𝑡 𝑥𝑖 𝑖∈[𝑛]



Kernelizing K-means algorithm (cont’d)

• How to calculate 𝜙(𝑥) − 𝑐𝑗 2

2
 without explicitly evaluating 𝜙?

• Key observation: 𝑐𝑗 always takes the form 𝑐𝑗 =
1

|𝑈|
σ𝑖∈𝑈 𝜙(𝑥𝑖) for some 𝑈, and therefore has the 

form 𝑐𝑗 = σ𝑖=1
𝑛 𝛼𝑖𝜙(𝑥𝑖)

• Therefore, 

𝜙(𝑥) − 𝑐𝑗 2

2
= 𝜙 𝑥 , 𝜙 𝑥 − 2 𝜙 𝑥 , σ𝑖=1

𝑛 𝛼𝑖𝜙 𝑥𝑖 + σ𝑖=1
𝑛 𝛼𝑖𝜙 𝑥𝑖 , σ𝑖=1

𝑛 𝛼𝑖𝜙 𝑥𝑖

                         = 𝐾 𝑥, 𝑥 − 2 σ𝑖=1
𝑛 𝐾 𝑥, 𝑥𝑖 + σ𝑖 σ𝑗 𝛼𝑖𝛼𝑗𝐾(𝑥𝑖 , 𝑥𝑗)

• Efficiently computable: only requires evaluating 𝐾 now
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Clustering as cost minimization: additional remarks

• The squared reconstruction error (aka k-means objective) is not the only criterion used:

     𝑓 𝑐1, … , 𝑐𝑘 = σ𝑖=1
𝑛 min

𝑗∈ 𝑘
𝑥 − 𝑐𝑗 2

2
 

• Alternative popular cost functions: 

 k-median: 𝑓 𝑐1, … , 𝑐𝑘 = σ𝑖=1
𝑛 min

𝑗∈ 𝑘
𝑥 − 𝑐𝑗 2

 k-center: 𝑓 𝑐1, … , 𝑐𝑘 = max
𝑖

 min
𝑗∈ 𝑘

𝑥 − 𝑐𝑗 2

• Furthermore, we don’t have to restrict to using ℓ2 reconstruction error
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Outline

• Clustering

• K-means clustering revisited

• Hierarchical clustering

• Principal Component Analysis (PCA)
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Hierarchical clustering – getting rid of tuning k

• Motivation: multiresolution data representation

• Idea: produce a tree structure over objects

• Can prune the tree appropriately to fit application needs (e.g. cluster radius / size requirements) 
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Hierarchical clustering

• Method 1: Top-down (divisive)

• 𝑘-means clustering with 𝑘=2

• Do this recursively on each resulting cluster (no 
more recursion when there is only one point in a 
cluster)

• Conceptually similar to decision tree training

• Method 2: bottom-up (agglomerative, more popular)

• Start with every point 𝑥𝑖  being a singleton cluster

• Repeatedly pick a pair of clusters with the smallest 
‘distance’

• How do we define a distance between two clusters?
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Agglomerative clustering: Distance between two clusters

• Single linkage

• dist 𝐶, 𝐶′ = min
𝑥∈𝐶,𝑥′∈𝐶′

𝑥 − 𝑥′
2

• Complete linkage

• dist 𝐶, 𝐶′ = max
𝑥∈𝐶,𝑥′∈𝐶′

𝑥 − 𝑥′
2

• Average linkage

• dist 𝐶, 𝐶′ =
1

𝐶 ⋅|𝐶′|
σ𝑥∈𝐶 σ𝑥′∈𝐶 𝑥 − 𝑥′

2

25https://girke.bioinformatics.ucr.edu/GEN242/tutorials/rclustering/rclustering/



Outline

• Clustering

• K-means clustering revisited
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• Principal Component Analysis (PCA)
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Motivation
Data often have a lot of redundant information…

Example A dataset consisting of a hand-drawn 3 at random locations 
and rotations in a 100x100 pixel image.

Data Dimension 100 x 100 = 10,000

Intrinsic Dimension 3 (X-position, Y-position, Rotation)
[ Source: Bishop, C. ]



Motivation

…or data have strongly dependent features…

Fahrenheit Celsius

3.1 -16.1

100.5 38.1

27.3 -2.6

18.1 -7.7

18.9 -7.3

21.7 -5.7

… …

Linear Function



Motivation

…or data are high-dimensional but have low intrinsic dimension…

…in all cases, finding lower-dimensional representation is useful



Example: Iris Dataset
Recall that the Iris dataset has 4 features: 

sepal length / width, petal length / width…



Example : Iris Dataset

Data still cluster in a two-dimensional subspace

We can represent data in 2D to 
reduce complexity, visualize 

results, etc.



Linear Dimensionality Reduction

Project data onto a line or plane…

…one of the simplest dimensionality 
reduction approaches

First, let’s review some linear 
algebra…

[ Source: Manfred Warmuth; Bishop, C. ]



Linear Dimensionality Reduction

Projecting data onto a vector 𝑢 is a 
simple inner product,

[ Source: Bishop, C. ]

We call u the linear subspace

Question Why would dimensionality 
reduction be better than feature 

selection (e.g. choose 1-D features X1 or 
X2)?



Linear Dimensionality Reduction

Projecting data onto a vector is a simple 
inner product,

[ Source: Bishop, C. ]

We call u the linear subspace

Answer No features are discarded (uses 
all the data),



Linear Dimensionality Reduction

Which choice of subspace is best?  And why?



Linear Dimensionality Reduction

Which choice of subspace is best?  And why?

Idea Choose the subspace that captures the most 
variation in the original data



Principal Component Analysis (PCA)
Identify directions of maximum variation as subspaces…

…we call each direction a principal component
[ Source: Bishop, C. ]



Principal Component Analysis (PCA)

First, center the data by subtracting the sample mean,

Variance of projected data,

Projection of
nth data point

Projection of
mean



Maximum Variance Formulation

A little algebra…

Pull out u

Quadratic form

Define:                                                    

Then:
This is what we will

optimize over u

What is this? Data covariance matrix



Maximum Variance Formulation

Don’t want to cheat with large magnitude u, so we add penalty,

Find u so that projected variance is maximal…

Set the derivative (gradient) to zero and solve…

What does this equation mean?

𝒖 is an eigenvector with
eigenvalue 𝝀    



Recap of Concepts

•  Learning a low-dimensional representation is useful 

• The easiest approach is to find a linear subspace

•  PCA chooses the linear subspace that maximizes variance of the projected 
data

•  Such subspaces are defined by the eigenvectors,

But what is an eigenvector?



Linear Transformations

Consider the matrix:

Let’s multiply it with some vectors…

• Matrix transforms vectors from one basis to another

• Columns are transformation of standard basis



Eigenvalue & eigenvector
Observe that the X-axis vector just gets 
“stretched out”,

Define some variables and we have the equation,

Factoring out the 3 we have,

So (1,0)T is an eigenvector of 𝑆 with eigenvalue 3



Eigenvalue & eigenvector

Transformation has one other eigenvector,

• Complete eigen-representation of 𝑆

• Eigenvectors of linear transformation 𝑆 are 
only stretched / shrunk / flipped

• Eigenvalues tell how much they are stretched 
/ shrunk / flipped

Eigenvectors Eigenvalues



Eigenvalue & eigenvector

Eigenvalue & eigenvector highlight what a linear transformation 
does by identifying directions that are not altered

Eigenvectors Eigenvalues



Eigenvalue & eigenvector

Eigenvectors / values of a matrix solve the equation

• Matrix 𝑆 may have multiple eigenvectors / values that solve the above 
equation



Eigendecomposition for symmetric real matrices

• Fact: Every symmetric real matrix 𝐴 ∈ ℝ𝑑×𝑑 is guaranteed to have the following factorization:

• Convention: 𝜆1 ≥ ⋯ ≥ 𝜆𝑑

• For positive semi-definite (PSD) 𝐴, 𝜆𝑖 ≥ 0 for all 𝑖

• Here, 𝑉 =
| ⋯ |

𝑣1 … 𝑣𝑑

| ⋯ |
  has orthonormal columns, i.e. 𝑣𝑖

⊤𝑣𝑗 = 𝐼(𝑖 = 𝑗)

• Why do we care?

• Our data covariance matrix 𝑆 =
1

𝑛
σ𝑖=1

𝑛 𝑥𝑖 − ҧ𝑥 𝑥𝑖 − ҧ𝑥 ⊤ is symmetric real & PSD
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Eigendecomposition for symmetric real matrices

• Fact: Every symmetric real matrix 𝐴 ∈ ℝ𝑑×𝑑 is guaranteed to have the following factorization:

• Claim: 𝐴 has exactly 𝑑 (eigenvalue, eigenvector) pairs: (𝑣1, 𝜆1), … , (𝑣𝑑 , 𝜆𝑑)

• Why? Take 𝑣1 for example:

𝐴𝑣1 = 𝜆1𝑣1𝑣1
⊤𝑣1 + 𝜆2𝑣2𝑣2

⊤𝑣1 + ⋯ 𝜆𝑑𝑣𝑑𝑣𝑑
⊤𝑣1

                                                          = 𝜆1𝑣1
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Eigenvectors and Ellipses

Take all points on a unit circle and apply the 
linear transformation 𝐶

If C is a covariance matrix, then points will be 
transformed into an ellipse and…

• Eigenvectors are axes of ellipse

• Eigenvalues are length of each axes

• Sort eigenvalues to get major / minor / etc. 
axes

• In the context of PCA, eigenvectors = principal 
components

How does this connect to PCA?

https://mwarmuth.bitbucket.io/pubs/C77talk.pdf

𝑣1
𝑣2



Principal Component Analysis (PCA)
Sort eigenvectors by their eigenvalues…

…amount of variance in each principal component decreases with eigenvalue

[ Source: Bishop, C. ]

𝜆1𝑣1

𝜆2𝑣2



Data “Whitening”
Multiplying data by eigenvectors transforms data so they are zero-mean and 

uncorrelated

Data whitening can be an important preprocessing step for many data 
science applications (even if we don’t care about dimensionality 

reduction)

Diagonal matrix
of eigenvalues

Matrix of eigenvectors
on each column

Sample
mean



Principal Component Analysis (PCA)
How much variance is captured by just the first principal component (i.e. 

eigenvector with largest eigenvalue)?

[ Source: Bishop, C. ]

Let      be the first principal component, then 
variance of first PC is,

How much in the second PC?



Explained Variance
How much variance is captured in M < D principal components?

We call this the explained variance of 
the first M principal components

Divide by total variance to find 
percentage of the total variance 

explained by the subspace
[ Source: Bishop, C. ]



Concept Recap
Eigenvectors

• For a general linear transform – identify directions that are only stretched / 
shrunk / flipped

• For a covariance matrix – identify axes of the ellipse that describes covariance

PCA

• Learns linear subspace as M < D principal components corresponding to M 
eigenvectors with largest eigenvalues

• Can be used to whiten (standardize, de-correlate) data

• Explained variance of M principal components easily calculated as percent of 
total explained variance in whitened data



Parameters



Attributes



Caution

Careful with the following parameter,

Wrong

Right

Right

X already modified

Why would you
prefer one over

the other?

The first approach keeps 
pca object which allows to interpret PCs



Example : PCA on Iris Data
Load Iris data without labels,

Find PCA with 2 principal components,

How much variance did we capture?



Example : PCA on Iris Data

View data in 2-D subspace,

Do K-means clustering in 2-D subspace,



Nonlinear Dimensionality Reduction
For general data, linear dimensionality 

reduction is not sufficient…

Many methods exist for nonlinear 
dimensionality reduction



t-SNE

Nonlinear reduction can (potentially) amplify 
clustering properties

t-Distributed Stochastic Neighbor 
Embedding (t-SNE) Models similarity 

between data as a Student’s-t distribution in 
high / low dimensions and optimizes 

reduction to preserve similarity

Visualization shows MNIST digits projected to 2D



Parameters

Attributes



Example : t-SNE on Iris Dataset
t-SNE can work surprisingly well…

…but can be a bit fussy about parameters and unreliable

One advantage of PCA
is that it has no parameters

that need tuning (aside from
number of PCs)

PCA is also much easier
to interpret



Closing Comments

• Nonlinear methods in Scikit-Learn categorized under “manifold learning” in the manifold sub-
package,

• Isomap, Locally Linear Embedding, Spectral Embedding, Multidimensional scaling, and of 
course TSNE

• Other methods related to PCA (in decomposition sub-pkg):

• Factor Analysis, Kernel PCA, Incremental PCA

• For multiple data sources, consider cross-decomposition

• Canonical Correlation Analysis (CCA)

• Learns same embedding for both spaces

• Under cross_decomposition sub-package



Next time

• Probabilistic machine learning: Bayes networks

• Reading: CIML Chapter 9
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Backup
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Task 1 : Group These Set of Document into 3 
Groups based on meaning

Doc1 : Health , Medicine, Doctor

Doc 2 : Machine Learning, Computer

Doc 3 : Environment, Planet

Doc 4 : Pollution, Climate Crisis

Doc 5 : Covid, Health , Doctor



Task 1 : Group These Set of Document into 3 
Groups.

Doc1 : Health , Medicine, Doctor

Doc 2 : Machine Learning, Computer

Doc 3 : Environment, Planet

Doc 4 : Pollution, Climate Crisis

Doc 5 : Covid, Health , Doctor



Task 1 : Group These Set of Document into 3 
Groups.

Doc1 : Health , Medicine, Doctor

Doc 5 : Covid, Health , Doctor

Doc 3 : Environment, 
Planet

Doc 4 : Pollution, Climate 
Crisis

Doc 2 : Machine 
Learning, Computer



Task 2: Topic modeling

• Provides a summary of a corpus.

• 𝑛 tweets containing the keyword “bullying”, 
“bullied”, etc.

• Extracts 𝑘 topics: each topic is a list of words with 
importance weights.

• A set of words that co-occurs frequently 
throughout.

70
Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, Amy Bellmore, “Learning from Bullying Traces in Social Media”



Application: Clustering for feature extraction

• Feature extraction: histogram features (bag of visual words)

• A set of images:  𝑆 = 𝑥1, … , 𝑥𝑛

• Cut up each 𝑥𝑖 ∈ ℝ𝑑 into different parts 𝑥𝑖
(1)

, … , 𝑥𝑖
𝑚

∈ ℝ𝑝

• e.g., small (overlapping) patches of an image

• Notation: 𝑛 ≔ {1, … , 𝑛}

• Pool all the patches together: 𝑃 ≔ 𝑥𝑖
𝑗

𝑖∈ 𝑛 ,𝑗∈ 𝑚

• Run clustering on 𝑃 with #clusters=𝑘 ⇒  for each 𝑥𝑖
𝑗

, we have a cluster assignment 𝐴 𝑥𝑖
𝑗

∈ [𝑘]

• Generate the feature vector of 𝑥𝑖  as the histogram of 𝐴 𝑥𝑖
𝑗

𝑗∈[𝑚]

• i.e., 𝑧 = 𝑧1, … , 𝑧𝑘  where 𝑧ℓ is the count of the cluster ℓ

71https://towardsdatascience.com/bag-of-visual-words-in-a-nutshell-9ceea97ce0fb



𝑘-means clustering 

• Idea: to partition the data, it would be great if someone gives us 𝑘 reasonable centroids 𝑐1, … , 𝑐𝑘, 
since then we can partition the data with them.

• But we don’t have those centroids => Let’s find them with an optimization formulation.

    minimize
𝑐1,…,𝑐𝑘

𝑓(𝑐1, … , 𝑐𝑘), where 𝑓 𝑐1, … , 𝑐𝑘 = σ𝑖=1
𝑛 min

𝑗∈ 𝑘
𝑥 − 𝑐𝑗 2

2
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𝐴 𝑥 = arg min
𝑗∈[𝑘]

𝑥 − 𝑐𝑗 2



Special case: 𝑘=1

• min
𝑐1,…,𝑐𝑘

σ𝑖=1
𝑛 min

𝑗∈[𝑘]
𝑥𝑖 − 𝑐𝑗 2

2
 =>  min

𝑐
σ𝑖=1

𝑛 𝑥𝑖 − 𝑐 2
2

• Let 𝐹 𝑐 = σ𝑖=1
𝑛 𝑥𝑖 − 𝑐 2

2 convex; minimizer 𝑐∗ satisfies that ∇𝐹 𝑐∗ = 0

    => σ𝑖=1
𝑛 𝑥𝑖 − 𝑐∗ = 0 => 𝑐∗ =

1

𝑛
σ𝑖=1

𝑛 𝑥𝑖
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For 𝑘 ≥ 2

• minimize
𝑐1,…,𝑐𝑘

𝑓(𝑐1, … , 𝑐𝑘), where 𝑓 𝑐1, … , 𝑐𝑘 = σ𝑖=1
𝑛 min

𝑗∈ 𝑘
𝑥 − 𝑐𝑗 2

2
  =>  NP-hard even when 𝑑 = 2

• K-means algorithm: solve it approximately (heuristic)

• Observation: The chicken-and-egg problem.

• Cluster center location depends on the cluster assignment

• Cluster assignment depends on cluster location

• Very common heuristic (that may or may not be the best thing to do)

74

(Also called Lloyd’s algorithm)

Andrea Vattani, “the hardness of k-means clustering in the plane”
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Clustering



EM for PCA

For N data points of D-dimensions

• Computing the first M < D principal components takes O(MD2)

•  Evaluating the covariance needs O(ND2) time

•  Most expensive step in EM is O(NDM) time

•  If D large and M << D then O(NDM) << O(ND2)

We can derive an expectation maximization (EM) algorithm for PCA…but why 
would we do this if PCA is closed-form?
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Dimensionality Reduction 
and Principal Component Analysis (PCA)



Dimensionality reduction: motivation

• Data compression: Identifies important components that can reconstruct data points

• Identify informative feature transformations

• Visualization & visual analytics: high-dim data -> 2d => easy to plot

78
https://cran.r-project.org/web/packages/ggfortify/vignettes/plot_pca.html

Iris flower dataset (4 features)



PCA: Introduction 

• Task:

• Given: raw feature vectors 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑑, target dimension 𝑘

• Output: a 𝑘-dimensional subspace represented by an orthonormal basis 𝑞1, … , 𝑞𝑘 ∈ ℝ𝑑 that 
the projections of datapoints with it would maximally preserve the ``spread’’. 

• Application: dimensionality reduction

• Closely related to projections

79
if k=1, which basis should we choose?



Principal components: usage

• Compressing the data: 

• Let 𝑄 =

− 𝑞1 −
…

− 𝑞𝑘 −
∈ ℝ𝑑×𝑘

• 𝑥𝑖 ∈ ℝ𝑑 mapped to ‘encoding’ 𝑧𝑖 = 𝑄𝑥𝑖 =
𝑞1

⊤𝑥𝑖

…
𝑞𝑘

⊤𝑥𝑖

∈ ℝ𝑘

• Resconstructing the data (‘decoding’)

• Given 𝑧𝑖, reconstruct 𝑥𝑖  with 𝑥𝑖 =
| ⋯ |

𝑞1 … 𝑞𝑘

| ⋯ |
𝑧𝑖 = 𝑄⊤𝑧𝑖

• Reconstruction error: 𝑥𝑖 − 𝑥𝑖 = 𝑥𝑖 − 𝑄⊤𝑄𝑥𝑖

• If 𝑘 = 𝑑, then perfect reconstruction ( 𝑥𝑖 = 𝑥𝑖)
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Projection
• Why reconstructing using 𝑄⊤𝑧𝑖?

• Given orthonormal 𝑄 =

− 𝑞1 −
…

− 𝑞𝑘 −
, 

𝑄⊤𝑄𝑥 =
| ⋯ |

𝑞1 … 𝑞𝑘

| ⋯ |
⋅

− 𝑞1 −
…

− 𝑞𝑘 −
𝑥 = 

𝑖

(𝑞𝑖
⊤𝑥)𝑞𝑖

   is also the projection of 𝑥 to subspace span(𝑞1, … , 𝑞𝑘)

   

• Projection Objective: find a 𝑘-dimensional projection matrix Π s.t. the average residual squared error 
(reconstruction error) is minimized:

1

𝑛


𝑖=1

𝑛

𝑥𝑖 − Π𝑥𝑖 2
2

81

projection matrix Π = σ𝑖=1
𝑘 𝑞𝑖𝑞𝑖

⊤ 



Projection when k=1

• Objective:

argmin
𝑞: 𝑞 =1

1

𝑛


𝑖=1

𝑛

𝑥𝑖 − 𝑞𝑞⊤𝑥𝑖 2
2

• Observation: 𝑞𝑞⊤𝑥𝑖  and 𝑥𝑖 − 𝑞𝑞⊤𝑥𝑖  are orthogonal, and sum to 𝑥𝑖

• Pythagorean theorem => 𝑥𝑖 − 𝑞𝑞⊤𝑥𝑖 2
2 = 𝑥𝑖 2

2 − 𝑞𝑞⊤𝑥𝑖 2
2 = 𝑥𝑖 2

2 − 𝑞⊤𝑥𝑖
2

• PCA optimization problem is thus equivalent to 

argmax
𝑞: 𝑞 =1

1

𝑛


𝑖=1

𝑛

𝑞⊤𝑥𝑖
2

• In matrix form, argmax
𝑞: 𝑞 =1

𝑞⊤ 1

𝑛
𝑋⊤𝑋 𝑞
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PCA as variance maximization

argmax
𝑞: 𝑞 =1

1

𝑛


𝑖=1

𝑛

𝑞⊤𝑥𝑖
2

•
1

𝑛
σ𝑖=1

𝑛 𝑞⊤𝑥𝑖
2 = E𝑆 𝑞⊤𝑥 2

• If data is centered, i.e., E𝑆 𝑥 = 0 

    ⇒ the objective = var𝑆 𝑞⊤𝑥 = E𝑆 𝑞⊤𝑥 − E𝑆[𝑞⊤𝑥] 2

• PCA on centered data ⇔ Finding direction 𝑞, such that the projected data 
𝑞⊤𝑥 𝑥∈𝑆 has the maximum variance
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Eigendecomposition for real symmetric matrices

• Fact: Every Symmetric real matrix 𝐴 is guaranteed to have eigendecomposition with real 
eigenvalues:

• Convention: 𝜆1 ≥ ⋯ ≥ 𝜆𝑑

• For positive semi-definite 𝐴, 𝜆𝑖 ≥ 0 for all 𝑖

• Recall the definition of eigenvectors: 𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖 ∀𝑖 ∈ [𝑑]

• Here, 𝑉 =
| ⋯ |

𝑣1 … 𝑣𝑑

| ⋯ |
  has orthonormal columns, i.e. 𝑣𝑖

⊤𝑣𝑗 = 𝐼(𝑖 = 𝑗)
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Variational characterization of the top eigenvector

• Claim: max
𝑞: 𝑞 =1

𝑞⊤𝐴𝑞 has a maximizer 𝑞∗ = 𝑣1, with maximum objective value 𝜆1

• Proof: recall 𝐴 = σ𝑖=1
𝑛 𝜆𝑖𝑣𝑖𝑣𝑖

⊤

• (Maximum objective upper bound): For any unit vector 𝑞, 

                                      𝑞⊤𝐴𝑞 = σ𝑖=1
𝑑 𝜆𝑖 𝑣𝑖

⊤𝑞
2

≤ 𝜆1, 

     since 𝑎𝑖 = 𝑣𝑖
⊤𝑞

2

𝑖=1

𝑑
 satisfies σ𝑖=1

𝑑 𝑎𝑖 = 1 and 𝑎𝑖 ≥ 0 for all 𝑖

• (The upper bound is achievable) 𝑞∗ = 𝑣1 satisfies that 𝑞∗⊤𝐴𝑞∗ = 𝜆1
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𝑞: 𝑞 = 1

𝜆1

𝑞∗



PCA with 𝑘 ≥ 2

argmin
𝑄∈ℝ𝑑×𝑘,𝑄⊤𝑄=𝐼

1

𝑛


𝑖=1

𝑛

𝑥𝑖 − 𝑄𝑄⊤𝑥𝑖 2
2

Equivalent to argmax
𝑄∈ℝ𝑑×𝑘,𝑄⊤𝑄=𝐼

1

𝑛
σ𝑖=1

𝑛 𝑄⊤𝑥𝑖 2
2,  i.e., argmax

𝑄∈ℝ𝑑×𝑘,𝑄⊤𝑄=𝐼

tr 𝑄⊤ 1

𝑛
𝑋⊤𝑋 𝑄 , 

where for 𝐵 ∈ ℝ𝑑×𝑑, tr 𝐵 = σ𝑖=1
𝑑 𝐵𝑖𝑖  is the trace of matrix 𝐵 (Important property: tr 𝐴𝐵 = tr(𝐵𝐴))

• Variance maximization interpretation:

• For centered data, 𝑄⊤ 1

𝑛
𝑋⊤𝑋 𝑄 =

1

𝑛
σ𝑖=1

𝑛 𝑄⊤𝑥𝑖 𝑄⊤𝑥𝑖
⊤ is the covariance matrix of 𝑄⊤𝑥𝑖 ’s

• PCA chooses 𝑄 with the “largest” variance on projected data
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PCA with 𝑘 ≥ 2

argmax
𝑄∈ℝ𝑑×𝑘,𝑄⊤𝑄=𝐼

tr 𝑄⊤𝐴 𝑄

• Fact: optimal 𝑄 has form 𝑄∗ =
| ⋯ |

𝑣1 … 𝑣𝑘

| ⋯ |
, where 𝐴 has eigendecomposition 𝐴 = σ𝑖

𝑑 𝜆𝑖𝑣𝑖𝑣𝑖
⊤

• In summary, 

    k-dimensional subspace with smallest reconstruction error 

 = k-dimensional subspace with the maximum total variance 

 = top-k eigenvectors of 𝐴 =
1

𝑛
𝑋⊤𝑋 
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PCA pseudocode (with centering)

• Input: data matrix 𝑋 ∈ ℝ𝑛×𝑑

• Centering: Let 𝜇 =
1

𝑛
σ𝑖=1

𝑛 𝑥𝑖 . Compute 𝑥𝑖
′ = 𝑥𝑖 − 𝜇, ∀𝑖 ∈ [𝑛] 

• Compute the top 𝑘 eigenvectors 𝑉 = 𝑣1, … , 𝑣𝑘  of 
1

𝑛
σ𝑖=1

𝑛 𝑥𝑖
′ 𝑥𝑖

′ ⊤ 

• Feature map: 𝜙 𝑥 = 𝑣1
⊤ 𝑥 − 𝜇 , … , 𝑣𝑘

⊤ 𝑥 − 𝜇 ∈ ℝ𝑘

• (thm) Decorrelating property (aka “whitening”)

•
1

𝑛
σ𝑖=1

𝑛 𝜙 𝑥𝑖 = 0

•
1

𝑛
σ𝑖=1

𝑛 𝜙 𝑥𝑖 𝜙 𝑥𝑖
⊤ = diag(𝜆1, … , 𝜆𝑘)

• (optional) Reconstruction (the actual projection): apply 𝜇 + 𝑉𝜙 𝑥 ∈ ℝ𝑑

• can be used as a ``denoising’’ procedure.

88

(k-dimensional embedding)

𝜆𝑖  is the eigen value (paired with 𝑣𝑖)

https://towardsdatascience.com/pca-clearly-explained-how-when-why-to-use-it-and-feature-importance-a-guide-in-python-7c274582c37e



Example: MNIST dataset

89
https://stats.stackexchange.com/questions/340175/why-is-t-sne-not-used-as-a-dimensionality-reduction-technique-for-clustering-or



Example: data compression
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Example: eigenfaces

91
Wainwright, “High-dimensional statistics: an non-asymptotic viewpoint”; Yale Face Dataset

The Yale Face Dataset; 𝑛 = 165, 𝑑 = 243 × 320 = 77760 Eigenvalues of 𝐴 =
1

𝑛
σ𝑖=1

𝑛 𝑥𝑖𝑥𝑖
⊤



Example: eigenfaces (cont’d)

92
Wainwright, “High-dimensional statistics: an non-asymptotic viewpoint”; Yale Face Dataset

The average face, along with the top 24 PCs (eigenfaces) Reconstruction using the average face and the top PCs



PCA caveat

• The direction of maximizing variance is not necessarily useful for classification!
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Next lecture (10/12)

• Probabilistic machine learning; naïve Bayes algorithm

• Assigned reading: CIML Sections 9.1-9.3
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Eigendecomposition of real-symmetric matrices
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Eigenvectors and Ellipses

Take all points on a unit circle and apply the 
linear transformation S

If S is a covariance matrix, then points will be 
transformed into an ellipse and…

• Eigenvectors are axes of ellipse

• Eigenvalues are length of each axes

• Sort eigenvalues to get major / minor / etc. 
axes

• In the context of PCA eigenvectors = principal 
components

How does this connect to PCA?
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