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Linear Models

Linear Regression Fit a linear 
function to the data,

[ Image: Murphy, K. (2012) ] [ Image: Hastie et al. (2001) ]

Logistic Regression Learn a 
decision boundary that is linear in the 
data,



Nonlinear Data

What if our data are not 
well-described by a linear 

function?

What if classes are not 
linearly-separable?

[Source: Murphy, K. (2012) ]



Example: Earthquake Prediction 

Suppose that we want to predict the number of earthquakes 
that occur of a certain magnitude.  Our data are given by,

Fitting a linear regression

is not very helpful

[ Source: Silver, N. (2012) ]



Example: Earthquake Prediction 

Suppose that we want to predict the number of earthquakes 
that occur of a certain magnitude.  Our data are given by,

[ Source: Silver, N. (2012) ]

Idea Instead of fitting ordinary

linear regression,

Fit an alternative model



Basis Functions

• A basis function can be any function of the input features X

• Define a set of m basis functions

• Fit a linear regression model in terms of basis functions,

• Regression model is linear in the basis transformations

• Model is nonlinear in the data X



Common “All-Purpose” Basis Functions

• Linear basis functions recover the original linear model,

• Quadratic                     or                         capture 2nd order interactions

• An order p polynomial                               captures higher-order 
nonlinearities (but requires O(dp) parameters)

• Nonlinear transformation of single inputs, 

• An indicator function specifies a region of the input,

Returns mth dimension of X





Example: Polynomial Basis Functions

Create three two-dimensional data points [0,1], [2,3], [4,5]:

Compute quadratic features                                     ,

These are now our new data and ready to fit a model…



Example: Polynomial Regression

Create a 3rd order polynomial (cubic) regression,

Create cubic features                     ,



Example: Polynomial Regression



Linear Regression

Recall the ordinary least squares solution is given by,

Design Matrix

( each training input on a column )

Vector of

Training labels

Can similarly solve in terms of basis functions,



Example: Piecewise Constant Regression

Decompose the input space into 3 
regions with indicator basis functions,

Fit linear regression model,

Effectively fits 3 constant functions to 
data in each region

[Source: Hastie et al. (2001)]



Example: Piecewise Linear Regression

Decompose the input space into 3 
regions with basis functions,

Fit linear regression model,

Effectively fits 3 linear regressions 
independently to data in each region

Regression lines are discontinuous

at boundary points

[Source: Hastie et al. (2001)]



Example: Piecewise Linear Regression

Enforce constraint that lines agree at 
boundary points,

Where

An improvement, but generally prefer smoother functions…

[Source: Hastie et al. (2001)]



[Source: Hastie et al. (2001)]

Replace linear basis 
functions with 
polynomial,

Additional constraints 
ensure smooth 1st and 

2nd derivatives at 
boundaries



Polynomial Splines

These piecewise regression 
functions are called splines

Supported in Scikit-Learn
preprocessing.SplineTransformer

Caution Polynomial basis 
functions often yield poor out-of-
sample predictions with higher 
order producing more extreme 
predictions



Data Preprocessing

• Generally the first step in data science involves preprocessing 
or transforming data in some way

• Filling in missing values (imputation)

• Centering / normalizing data

• Etc.

• We then fit our models to this preprocessed data

• One way to view preprocessing is simply as computing some 
basis function



Basis Functions

Pros

•  More flexible modeling that is nonlinear in the original data

•  Increases model expressivity

Cons

•  Typically requires more parameters to be learned

•  More sensitive to overfitting training data – needs regularization

•  Need to find good basis functions (feature engineering)



Overfitting can happen (Schaeffer et al, 2023) 

• 𝑦 = 2𝑥 + cos(25𝑥)

• Fit a linear regression model with polynomial feature map 𝜙 𝑥 =
(1, 𝑥, . . 𝑥𝑝) with 20 training examples

22https://arxiv.org/pdf/2303.14151.pdf

𝑝 small 𝑝 ≈ 20 -- overfitting 𝑝 = 200 – “benign overfitting”



Overfitting can happen (Schaeffer et al, 2023) 

• 𝑦 = 2𝑥 + cos(25𝑥)

• Fit a linear regression model with polynomial feature map 𝜙 𝑥 =
(1, 𝑥, . . 𝑥𝑝) with 20 training examples

23

https://arxiv.org/pdf/2303.14151.pdf

Classical regime Modern regime – benign overfitting (circa 2018)
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Recall: Max-Margin Classifier

Minimum margin over

all training data

Maximize the

minimum margin

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

Find the parameters (w,b) that maximize the smallest 
margin over all the training data

http://www-bcf.usc.edu/~gareth/ISL/


Recall: Support Vector Machine

Last lecture: the above is equivalent to the following convex 
optimization problem…

Convex optimization problems can generally 
be solved efficiently (e.g. CVXPY)

• x are d-dimensional vectors => w is d-dimensional vector

• Margins determined by nearest data points called support vectors

This is known as the

primal optimization



Nonlinear Max-Margin Classifier

[ Source: Bishop, C. PRML]

Decision boundary is linear in the transformed data, but 
nonlinear in the original data space

Just as in the linear models we can 
introduce basis transformations,

Max-margin learning is similar,



Nonlinear Max-Margin Classifier

Data Space Basis Space

Decision boundary is linear in the transformed data, but 
nonlinear in the original data space



Nonlinear SVM: SVM with basis function

Again, this is equivalent to:

• 𝜙(𝑥) are D-dimensional vectors => w is a D-dimensional vector

• Margins determined by nearest data points called support vectors

This is known as the

primal optimization



Support Vector Machine: dual problem

SVM Dual Problem (high-level idea) Find the support vectors (set of 
constraints that hold with equality) that induce the max-margin classifier

Support vectors are tight to the margin, 
and satisfy constraints with equality:

All other points are outside the margin 
and constraints are loose:



Support Vector Machine: dual problem

SVM Dual Problem Find the support vectors (set of constraints that 
hold with equality) that that induce the max-margin classifier

For each data point, introduce a new 
optimization variable (dual variable),

After solving, produces a classifier

 

• Dual variables are nonzero(          ) for any support vector

• Exactly zero (            ) for non-support vectors

• Classifier only needs to store support vectors (sparse representation)

which classifies a new point as:
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Kernel Functions

Idea Define a new function as the inner product with basis transforms,

Basis transform

on new point

Basis transform

on training point

Interaction with training points

in transformed basis space

We can now represent the classifier without explicitly maintaining 𝜙(𝑥)’s,

We call this a

“kernel function”

Recall: nonlinear SVM 

Drawback 𝜙(𝑥) may be extremely high / infinite dimensional, making 
𝑦(𝑥) computationally expensive / impossible to evaluate using (*)  



Project

• Project proposal due Friday (3/22) 5pm

• Project guidelines (including proposal expectations): Piazza 
post @36

• Feel free to use “Search for teammates” in Piazza

• I also started an email thread for students looking for teams

• If you propose to form a team of more than 3, let’s have a 
quick chat



Kernel function: definition

• Definition: function 𝐾 𝑥, 𝑥′  is said to be a kernel function, if there 
exists some feature map 𝜙(𝑥) such that 𝐾 𝑥, 𝑥′ = 𝜙(𝑥), 𝜙(𝑥′)

  

• If this happens, 𝐾 is also said to be the kernel function associated 
with feature map 𝜙

• Not all functions 𝐾 𝑥, 𝑥′  are kernel functions!
• E.g. 𝐾 𝑥, 𝑥′ = 1 is a kernel function, but 𝐾 𝑥, 𝑥′ = −1 is not a kernel 

function (why?)

• We will see some useful tools for validating / invalidating kernel functions



Basic properties of kernel function

• If 𝜅 is a kernel function, then: 

• Positivity: 𝜅 𝑥, 𝑥 ≥ 0 for any 𝑥
• Why?

• Is 𝜅 𝑥, 𝑦 = max(𝑥, 𝑦) a kernel function?

• Symmetry: 𝜅 𝑥, 𝑦 = 𝜅(𝑦, 𝑥) for any 𝑥, 𝑦
• Why?

• Is 𝜅 𝑥, 𝑦 = 𝑥 − 𝑦 a kernel function?



Kernel function: an example

• Let 𝑥 < 1 

• 𝜙 𝑥 = 1, 𝑥, 𝑥2, 𝑥3 … , = 𝑥𝑛
𝑛=1
∞  

• Impossible to write down explicitly 

• Induced Kernel function: 

𝐾 𝑥, 𝑦 ≔ 𝜙 𝑥 , 𝜙 𝑦 = 

𝑛=1

∞

𝑥 ⋅ 𝑦 𝑛 =
1

1 − 𝑥𝑦

• Takes 𝑂(1) time to evaluate ☺ 

37



Example: Fisher’s Iris Dataset

Iris setosa Iris versicolor Iris virginica

Classify among 3 species of Iris flowers…

Four features (in centimeters)

• Petal length / width

• Sepal length / width



Kernel SVM in Scikit Learn

• General kernel-based SVM lives in:

sklearn.svm.svc(kernel=‘kernel_name’)

• Supports most major kernel types

• Generally use kernel when number of features > number data

Note: basis function has infinite dimensions

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC




Example: Fisher’s Iris Dataset

Fairly easy to separate 
setosa from others using a 

linear classifier

Need to use nonlinear basis / 
kernel representation to 

better separate other classes



Example: Fisher’s Iris Dataset

Train 8-degree polynomial kernel SVM classifier,

[ Source: https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/ ]

Generate predictions on held-out test data,

Show confusion matrix and classification accuracy,

https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/


Linear kernel

Example The linear basis                 produces the kernel,

This is called the linear kernel



Polynomial kernels

• 𝜅(𝑥, 𝑥’)  = 1 + 𝑥, 𝑥′ 𝑘 Q: is this a valid kernel?

• E.g., if 𝑑 = 2, 𝑥 = (𝑥1, 𝑥2) and 𝑧 = (𝑧1, 𝑧2), 𝑘 = 2,

1 + 𝑥1𝑧1 + 𝑥2𝑧2
2

 = 1 + 𝑥1
2𝑧1

2 + 𝑥2
2𝑧2

2 + 2𝑥1𝑧1 + 2𝑥2𝑧2 + 2𝑥1𝑥2𝑧2𝑧1

 = ⟨𝜙 𝑥 , 𝜙 𝑧 ⟩

where 𝜙 𝑢 = (𝑢1
2, 𝑢2

2, 2𝑢1, 2𝑢2, 2𝑢1𝑢2, 1)

• Exercise can this argument be generalized to other k, d?

• Exercise can you find other 𝜙 associated with 𝜅?
44



Gaussian kernel 

Example Gaussian kernel models similarity according to an 
unnormalized Gaussian distribution,

Also called a radial basis function (RBF)

Note Despite the name,

this is not a Gaussian

probability density.

𝐾 𝑥, 𝑥′ = exp −
𝑥 − 𝑥′ 2

2𝜎2

https://mccormickml.com/2013/08/15/the-gaussian-kernel/



Gaussian/RBF kernels

• 𝐾 𝑥, 𝑥′ = exp −
𝑥−𝑥′ 2

2𝜎2

• How can we show that this is a valid kernel?

46

(often parameterized as exp −𝛾 𝑥 − 𝑥′ 2 )

=> We should find 𝜙(𝑥) that results in  

     𝐾 𝑥, 𝑥′ = ⟨𝜙 𝑥 , 𝜙 𝑥′ ⟩

(from https://www.csie.ntu.edu.tw/~cjlin/talks/kuleuven_svm.pdf)



Gaussian kernel

• 𝛾 =
1

2𝜎2

• Larger 𝛾 ⇒ smaller 𝜎2 ⇒ more likely to overfit

• A practical heuristic: choose 𝜎 = median( 𝑥𝑖 − 𝑥𝑗 , 𝑖 ≠ 𝑗)
47

recall how kernel SVM make predictions:

 𝑤⊤𝜙(𝑥∗) = σ𝑖 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥∗) 

weighted k-NN

• arg max
𝑦

σ𝑖∈𝑁 𝑥∗
𝑤𝑖 1{𝑦𝑖 = 𝑦}

• e.g., 𝑤𝑖 = exp −𝛽 ⋅ 𝑑 𝑥𝑖 , 𝑥∗
2



How to recognize a valid kernel

Fact (Mercer’s Theorem): 𝜅 is a valid kernel function if and only if 
𝜅 satisfies Mercer’s condition, i.e., Given any set of data 𝑆 = 𝑥𝑖 𝑖=1

𝑛 , its 
induced nxn Gram matrix, 

Is a symmetric positive semidefinite (PSD) matrix.



Math recap: symmetric positive semi-definite matrices

• A square symmetric matrix 𝑀 ∈ ℝ𝑑×𝑑 is said to be positive 
semi-definite (PSD), if for any vector 𝑣 ∈ ℝ𝑑, 𝑣⊤𝑀𝑣 ≥ 0

• 𝑑 = 1, PSD matrices are nonnegative numbers 

• They induce quadratic functions 

that “curve up” in all directions

• 𝑀 is PSD ⇔ all eigenvalues of 𝑀 

  are nonnegative (more on this later) https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-

2011/pages/positive-definite-matrices-and-applications/



Basic properties of kernel function: revisited

• If 𝜅 is a kernel function, then: 

• For any 𝑥, let 𝑆 = {𝑥}:
• 𝐾𝑆 = (𝜅(𝑥, 𝑥)) is symmetric positive definite 

=> 𝜅 𝑥, 𝑥 ≥ 0

• For any 𝑥, 𝑦, let 𝑆 = {𝑥, 𝑦}:

• 𝐾𝑆 =
𝜅(𝑥, 𝑥) 𝜅(𝑥, 𝑦)
𝜅(𝑦, 𝑥) 𝜅(𝑦, 𝑦)

 is symmetric positive definite 

=> 𝜅 𝑥, 𝑦 = 𝜅(𝑦, 𝑥)



Example

• Suppose examples 𝑥, 𝑦 ≥ 0

• Is 𝜅 𝑥, 𝑦 = max(𝑥, 𝑦) a valid kernel function?

• After trying a few 𝜙’s to see if 𝜅 𝑥, 𝑦 = ⟨𝜙 𝑥 , 𝜙(𝑦)⟩ and 
failing, may want to think about proving the opposite

• Guess 𝑆 = {0, 2}   ⇒ 𝑲𝑆 =
𝜅(0,0) 𝜅(0,2)
𝜅(2,0) 𝜅(2,2)

=
0 2
2 2

• 𝑲𝑆 is not PSD. Why?

• Method 1: find 𝑣 such that 𝑣⊤𝑲𝑆𝑣 < 0

• Method 2: check that some eigenvalue of 𝑲𝑆 is < 0



[ Source: Bishop, C. ]



Why Kernel Functions?

At this point you might be confused…

•  We learned how to fit linear models

•  We learned how to introduce nonlinearities by using basis functions

•  Kernels are just inner products of basis functions

…then why do we need Kernels?



Why Kernel Functions?

• Can directly specify kernel function without knowing basis functions

•  Kernels can be more intuitive to specify since they capture meaningful 
distance / difference between two data points

•  Kernel-based models can be more flexible than basis functions

•  Example The RBF (Gaussian) kernel corresponds to infinite-
dimensional basis functions.  Classifiers based on RBF kernel can 
perfectly separate any data.



Kernel Ridge Regression

Recall the solution of L2-regularized linear regression (ridge regression),

Define the Gram matrix and vector as,



Kernel Ridge Regression

The learned regression function (for a new point) is then,

Solution to ridge regression

Nontrival linear algebra identity

Substitute kernel

Can now express regression without explicitly 
specifying basis functions

Also known as the dual 

formulation of linear 

regression



Kernel Ridge Regression

Kernel representation requires inversion of NxN matrix

Primal Dual

MxM Matrix Inversion

O(M3)

NxN Matrix Inversion

O(N3)

#training data N vs. #basis functions M





Example: Kernel Ridge Regression

Generate some sinusoidal (periodic) data,

Define an exponentiated sinusoidal kernel (what kind of similarity does this capture?)

Fit kernel ridge regression,

Plot results,



Kernelized Perceptron algorithm

• How to combine the Perceptron algorithm with a nonlinear feature mapping 𝜙: 𝒳 →
ℝ𝐷?

• Recall the Perceptron algorithm, run with 𝜙 𝑥 ’s: 

• Is it possible to implement this without ever explicitly computing 𝜙?

• Suppose 𝜙 induces a kernel 𝐾
60



Kernelized Perceptron algorithm

• Key observation: throughout the run of the Perceptron algorithm, 𝑤 
always lies in span(𝜙 𝑥1 , … , 𝜙(𝑥𝑛)), i.e. 

        𝑤 always has the form  𝛼1𝜙 𝑥1 + ⋯ + 𝛼𝑛𝜙(𝑥𝑛)

• Key algorithmic idea: instead of explicitly maintaining 𝑤 ∈ ℝ𝐷, we 
implicitly maintain it by maintaining its linear combination coefficient 
(𝛼1, … , 𝛼𝑛) ∈ ℝ𝑛! 

61

𝐾(𝑥𝑚, 𝑥𝑛) 



Kernel methods: summary

• Kernels may be more intuitive to specify 
than basis functions (e.g. computational 
biology => string kernel, graph kernel) 

• Many standard algorithms has its 
kernelized versions

• Computational complexity: 
• Avoids dependence on basis function 

dimension ☺

• oftentimes 𝑂(𝑛2), 𝑛 = #training examples  



Kernel methods: summary

• What if we have a good choice of kernel 𝜅 but cannot stand 
𝑂(𝑛2) time cost?

• Find basis function 𝜙 such that 𝜅 𝑥, 𝑥′ = ⟨𝜙 𝑥 , 𝜙(𝑥′)⟩, or even just 
approximately equal

• (NeurIPS’17 test of time paper)

• Modern perspective: 
• Kernel methods are useful for understanding the behavior of training 

neural networks (later in the course)



Backup



Classification as Regression

• This is a discriminant function, since it discriminates between classes

• It is a linear function and so is a linear discriminant

• Green line is the decision boundary (also linear)

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28 

Recall our linear regression can be 
used for classification via the rule,

Generalizes to

higher-dimensional

features

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28


Linear Decision Boundary

Least squares regression yields decision boundary based on least 
squares solution…

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

http://www-bcf.usc.edu/~gareth/ISL/


Linear Decision Boundary

…any boundary that separates classes is equivalently good on training 
data

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

http://www-bcf.usc.edu/~gareth/ISL/


Classifier Margin

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

The margin measures minimum 
distance between each class and the 

decision boundary

Observation Decision boundaries with 
larger margins are more likely to 
generalize to unseen data

Idea Learn the classifier with the largest 
margin that still separates the data…

…we call this a max-margin classifier

http://www-bcf.usc.edu/~gareth/ISL/


Max-Margin Classifier

Recall that the linear model is given by

Let classes be              so classification 
rule is, 

Decision boundary is now at y(x) = 0 and 
distance to the margin is,

Where the norm of the weights is 

Known as the distance from a 

point to a plane equation:

wiki/Distance_from_a_point_to_a_plane

https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_plane


Max-Margin Classifier

For training data                  we only care about the margin for correctly-
classified points where,

The margin of correctly-classified points is then given by,

Maximize margin over correctly-classified data points,
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Basis Functions

Basis functions transform linear models into nonlinear ones…

…but it is often difficult to find a good basis transformation

Linear Regression
Classification

( Logistic Regression )



Learning Basis Functions

What if we could learn a basis function so that a simple linear 
model performs well…

…this is essentially what standard neural networks do…

Neural Net

Warped SpaceData Space

Ignore the circled points…I

reused these from the SVM slides



Neural Networks

• Flexible nonlinear transformations of data

• Resulting transformation is easily fit with a linear model

• Relatively efficient learning procedure scales to massive data

• Apply to many Machine Learning / Data Science problems
• Regression

• Classification

• Dimensionality reduction

• Function approximation

• Many application-specific problems



Neural Networks

Forms of NNs are used all over the place nowadays…

FB Auto Tagging Self-Driving Cars

Machine Translation

Creepy Robots



Rosenblatt’s Perceptron

In 1957 Frank Rosenblatt constructed 
the first (single layer) neural network 

known as a “perceptron”

He demonstrated that it is capable of 
recognizing characters projected onto a 

20x20 “pixel” array of photosensors

Despite recent attention, 
neural networks are fairly old



Rosenblatt’s Perceptron

Perceptron

• In Rosenblatt’s perceptron, the inputs are tied directly to output

• “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics” (1962)

• Criticized by Marvin Minsky in book “Perceptrons” since can only learn linearly-separable functions

• The perceptron is just logistic regression in disguise



Multilayer Perceptron

[ Source: http://neuralnetworksanddeeplearning.com ]

Input layer

perceptrons

Hidden layer

perceptrons

This is the quintessential Neural Network…

…also called Feed Forward Neural Net or Artificial Neural Net

Adding hidden layers 
allows NN to learn 
arbitrary functions

http://neuralnetworksanddeeplearning.com/


Modern Neural Networks

[ Source: Krizhevsky et al. (NIPS 2012) ]

Modern Deep Neural networks add many hidden layers

…and have many millions of parameters to learn



Handwritten Digit Classification

Classifying handwritten digits is the “Hello World” of NNs

Modified National Institute of 
Standards and Technology 

(MNIST) database contains 60k 
training and 10k test images

Each character is centered 
in a 28x28=784 pixel 

grayscale image



Multilayer Perceptron for MNIST Classification[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each image pixel is a

numer in [0,1] indicated

by highlighted color

https://www.youtube.com/watch?v=aircAruvnKk


Feedforward Procedure

Each node computes a 
weighted combination of nodes 

at the previous layer…

Then applies a nonlinear 
function to the result

Often, we also introduce

a constant bias parameter



Nonlinear Activation functions

We call this an activation function and typically write it in vector form,

An early choice was the logistic function,

Later found to lead to slow learning and ridge 
functions like the rectified linear unit (ReLU),

Or the smooth Gaussian error linear unit (GeLU),

Gaussian CDF



Multilayer Perceptron

Final layer is typically a linear 
model…for classification this is 

a Logistic Regression

Recall that for multiclass 
logistic regression with K 

classes,

Vector of activations from

previous layer



[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each parameter has some impact 

on the output…need to tweak 

(learn) all parameters 

simultaneously to improve 

prediction accuracy

https://www.youtube.com/watch?v=aircAruvnKk


Training Multilayer Perceptron

For each training example, 

predict label and adjust 

weights…

• How to score final layer output?

• How to adjust weights?



Training Multilayer Perceptron

Score based on difference between final layer and one-

hot vector of true class…

Input

[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

https://www.youtube.com/watch?v=aircAruvnKk


Training Multilayer Perceptron

Our cost function for ith input is error in terms of weights / biases…

13,002 Parameters

in this network

…minimize cost over all training data…

This is a super high-dimensional optimization (13,002 
dimensions in this example)…how do we solve it?

Gradient descent!



Training Multilayer Perceptron

Need to find zero derivative (gradient) solution…

Convex Cost Function

YAY!

Non-convex Cost Function

Boo!

High-Dimensional Non-convex

Super Boo!

Actually, the situation is much worse, since the cost is super 
(13,002) high dimensional…but we proceed as if…



Training the Multilayer Perceptron

Training the MLP is 
challenging…but it’s much easier 

than how Rosenblatt did it



Example

Play with a small multilayer perceptron on a 
binary classification task…

https://playground.tensorflow.org/ 

https://playground.tensorflow.org/


Computing the Derivative

So we need to compute derivatives of a super complicated 
function…

Dropped bias terms

for simplicity

Recall the derivative chain rule

Differentiate g with

respect to w
Derivative of f at its

argument g(w)

e.g. treat g(w) as a variable



Derivative Chain Rule

Alternatively we can write this as…

Example Derivative of the logistic function,



Backpropagation
[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Activation at final layer involves 
weighted combination of 

activations at previous layer…

Which involves a weighted 
combination of the layer before 

it…

And so on…

https://www.youtube.com/watch?v=aircAruvnKk


Backpropagation

Backpropagation is the procedure of repeatedly applying the 
derivative chain rule to compute the full derivative

Example

This is simply the derivative chain rule applied through the 
entire network, from the output to the input



Backpropagation

• Implementation-wise all we need is a function that computes 
the derivative of each nonlinear activation

• We can repeatedly call this function, starting at the end of the 
network and moving backwards

• In practice, neural network implementations use auto 
differentiation to compute the derivative on-the-fly very

• Can do this efficiently on graphical processing units (GPUs) 
on extremely large training datasets



Universal Approximation Theorem

(Informally) For any function f(x) there exists a multilayer 
perceptron that approximates f(x) with arbitrary accuracy.

• Specific cases for arbitrary depth (number of hidden layers) and 
arbitrary width (number of nodes in a layer)

• Not a constructive proof (doesn’t guarantee you can learn parameters)

• Corollary : The multilayer perceptron is a universal turing machine

• Also means it can easily overfit training data (regularization is critical)



Regularization

With four parameters I can fit an elephant.  With five I 
can make him wiggle his trunk.  - John von Neumann

Our example model has 13,002 
parameters…that’s a lot of elephants!  

Regularization is critical to avoid overfitting…

…numerous regularization schemes 
are used in training neural networks



Regularization : Weight Decay

In neural network speak, adding an L2 penalty is called weight decay



Regularization

• L1 regularization and L1+L2 (elastic net) regularization

• Dropout Each iteration randomly selects a small number of 
edges to temporarily exclude from the network (weights=0)

• Intuition Avoids predictions that are overly sensitive to any small 
number of edges

• Early stopping Just as it sounds…stop the network before 
reaching a local minimum…dumb-but-effective





Scikit-Learn : Multilayer Perceptron

Fetch MNIST data from www.openml.org :

Train test split (60k / 10k),

Create MLP classifier instance,

• Single hidden layer (50 nodes)

• Use stochastic gradient descent

• Maximum of 10 learning iterations

• Small L2 regularization alpha=1e-4

http://www.openml.org/


Scikit-Learn : Multilayer Perceptron

Fit the MLP and print stuff…

Visualize the weights for each node…

…magnitude of weights indicates which 
input features are important in prediction



More Advanced Topics

Many other NN architectures exist beyond MLP

• Convolutional NN (CNN) For image processing / computer viz.

• Recurrent NN (RNN) For sequence data (e.g. acoustic signals, video, etc.) , 
long short-term memory (LSTM) is popular

• Generative Adversarial Nets (GANs) For generating creepy deepfakes

• Restricted Boltzmann Machine (RBM) Another generative model

Many open areas being researched

• More reliable uncertainty estimates

• Robustness to exploits

• Interpretability

• Better scalability 



Resources

There are tons of excellent resources for learning about neural 
networks online…here are two quick ones:

3Blue1Brown Youtube channel has a nice four-part intro:

https://www.youtube.com/watch?v=aircAruvnKk 

Free book by Michael Nielson uses MNIST example in Python:

http://neuralnetworksanddeeplearning.com/ 

Prof. Stephen Bethard often teaches an excellent class:

ISTA 457 / INFO 557

https://www.youtube.com/watch?v=aircAruvnKk
http://neuralnetworksanddeeplearning.com/


Kernel Functions

A kernel function is an inner-product of some basis function 
computed on two inputs

A consequence is that kernel functions are non-negative real-
valued functions over a pair of inputs,

Kernel functions can be interpreted as a measure of 
distance between two inputs



Example: Earthquake Prediction 

Suppose that we want to predict the number of earthquakes 
that occur of a certain magnitude.  Our data are given by,

But plotting outputs on

a logarithmic scale reveals

a strong linear relationship…

[ Source: Silver, N. (2012) ]



Example

• Is 𝐾 𝑥, 𝑦 = max(𝑥, 𝑦) a valid kernel? 

• After some trials of constructing 𝜙, you may want to try 
disproving that 𝐾 is a kernel

• Suffices to show that 𝐾 fails Mercer’s condition, i.e. exists 
some dataset 𝑆 whose Gram matrix is not PSD

• Guess 𝑆 = {−1} ⇒ 𝐺 = (−1) not PSD

108



Basic properties of kernel function

• If 𝜅 is a kernel function, then: 

• Positivity: 𝜅 𝑥, 𝑥 ≥ 0
• Why?

• Is 𝐾 𝑥, 𝑦 = max(𝑥, 𝑦) a valid kernel?

• Symmetry: 𝜅 𝑥, 𝑦 = 𝜅(𝑦, 𝑥)
• Why?

• Is 𝐾 𝑥, 𝑦 = 𝑥 − 𝑦 a valid kernel?
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