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Recap of last 2 lectures

• Classification performance beyond error rates
• How is TPR defined?

• How is ROC curve defined?

• Reliable model evaluation & comparison 
• Confidence interval 

• Hypothesis testing

• Debugging ML algorithms
• Assessing data size & quality

• Learning algorithm implementation

• Bias-variance tradeoff
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Linear Regression

Regression Learn a function that 
predicts outputs from inputs,

Linear Regression As the name 
suggests, uses a linear function:

Outputs y are real-valued

INPUT: X

O
U

T
P

U
T
: 

Y

We will consider noise in data later…



Linear Regression

Where is linear regression useful?

Trendlines Stock Prediction Climate Models

Used anywhere a linear relationship is assumed 
between continuous inputs / outputs

Massie and Rose (1997)



Line Equation

Recall the equation for a line has a 
slope and an intercept,

Slope Intercept

• Intercept (b) indicates where line crosses y-axis

• Slope controls angle of line

• Positive slope (w) → Line goes up left-to-right

• Negative slope → Line goes down left-to-right



Linear regression in dimension >= 2

8

ℎ 𝑥 = 𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2 + 𝑏 = 𝑤, 𝑥 + 𝑏

𝑦 = 𝑤, 𝑥 + 𝑏 can be viewed as a 

hyperplane



Inner Products

Recall the definition of an inner product:

Projection of one vector onto another,

where

Unit Vector

w



Linear Regression

For D-dimensional input vector              the 
plane equation,

Sometimes we simplify this by including the 
intercept into the weight vector,

Since:

[ Image: Murphy, K. (2012) ]



Modeling Noise in Data

Gaussian (a.k.a. Normal) distribution with 
mean (location)    and variance (scale)     
parameters,

P
ro

b
a
b

il
it

y
 D

e
n

s
it

y

Useful Properties

• Closed under independent addition:

• Closed under linear transformation (a and b constant):

We say                       . 

𝑋, 𝑌 indepdent



Linear Regression

Input-output mapping is not exact, so we will 
assume data has zero-mean Gaussian noise,

INPUT: X

O
U

T
P

U
T
: 

Y

where

Multivariate Normal

(uncorrelated)

This is equivalent to:

Because Adding a constant to a Normal RV is still a Normal RV,

In the case of linear regression           and  



Learning linear regression models

We need to learn the model from data 

by learning the regression weights

Don’t know these; 

need to learn them

Data – We have this

Random; Can’t do 

anything about it

How to do this?  
What makes good 

weights?



Learning Linear Regression Models

There are several ways to think about fitting regression:

• Intuitive Find a plane/line that is close to data

• Functional Find a line that minimizes the least squares loss

• Estimation Find maximum likelihood estimate of parameters

They are all equivalent…



Fitting Linear Regression

Intuition Find a line that is as 
close as possible to every 

training data point

The distance from each point 
to the line is the residual

Training Output Prediction

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/ 

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/
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Least Squares Solution

Functional Find a line that 
minimizes the sum of 

squared residuals

Over all the training data,

Least squares regression
https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/ 

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/


Optimization basics

18

Example: maximize 𝑓 𝜃 = −𝑎𝜃2 + 𝑏𝜃 + 𝑐 with 𝑎 > 0

It is a quadratic function.

=> finding the ’flat’ point suffices

Compute the gradient and set it equal to 0 (stationary points)

                              𝑓′ 𝜃 = −2𝑎𝜃 + 𝑏 =>    𝜃 =
𝑏

2𝑎

Q: Does this trick of grad=0 work for other functions?

Yes for maximization of concave functions

    or minimization of convex functions 

Closed form!

(gradient illustration)



Convex sets 

• [Def] A set 𝐶 is convex if
∀𝑢, 𝑣 ∈ 𝐶, ∀𝛼 ∈ [0,1], we have 𝛼𝑢 + 1 − 𝛼 𝑣 ∈ 𝐶

19

convex combination

Line segment between 𝑢, 𝑣 



Convex function: intuition

• Informally,
• A convex function is one that looks “convex” from the bottom

• A convex function has only one “valley”

• A convex function is one whose epigraph is a convex set 

20

Nonconvex functionConvex functions



Convex function: formal definition

• Formally, 
[Def] Let 𝐶 be a convex set. A function 𝑓: 𝐶 → ℝ is convex if ∀𝑢, 𝑣 ∈ 𝐶
and ∀𝛼 ∈ 0,1 ,

𝑓 𝛼𝑢 + 1 − 𝛼 𝑣 ≤ 𝛼𝑓 𝑢 + 1 − 𝛼 𝑓 𝑣

• [Def] Function 𝑓 is said to be concave, if −𝑓 is convex 
21



Optimization basics

22

What if there is no closed form solution?

Example: 𝑓 𝜃 =
1

2
𝑥(𝑎𝑥 − 2 log 𝑥 + 2)

𝑓′ 𝜃 = 𝑎𝑥 − log(𝑥)

No known closed form for 𝑎𝑥 = log 𝑥

Iterative methods: 
- Hillclimbing - gradient descent

- Newton’s method

- Etc. 

Iterative methods for optimization

=> Will find the global minimum

for convex functions (convex optimization)

More generally, finds a local minimum but 

could also get stuck at stationary points.

Q: find the stationary points and global minimum



Least Squares

This is just a quadratic function…

• Convex => all local minima are global

• Minimum given by zero-derivative

• Can find a closed-form solution

Let’s see for scalar case with no bias,



Least Squares : Simple Case

Derivative (+ chain rule)

Distributive Property

Algebra



Least Squares in Higher Dimensions

Things are a bit more complicated in higher 
dimensions and involve more linear algebra,

[ Image: Murphy, K. (2012) ]

Can write regression over all training data more compactly…

Design Matrix

( each training input on a row)

Vector of

Training labels

Nx1 Vector



Least Squares in Higher Dimensions

Least squares can also be written more 
compactly,

[ Image: Murphy, K. (2012) ]

Some slightly more advanced linear algebra 
gives us a solution,

Ordinary Least Squares (OLS) solution

Derivation a bit involved for lecture but…

• We know it has a closed-form and why

• We can evaluate it

• Generally know where it comes from



Learning Linear Regression Models

There are several ways to think about fitting regression:

• Intuitive Find a plane/line that is close to data

• Functional Find a line that minimizes the least squares loss

• Estimation Find maximum likelihood estimate of parameters

They are all the same thing…



Learning Linear Regression Models

There are several ways to think about fitting regression:

• Intuitive Find a plane/line that is close to data

• Functional Find a line that minimizes the least squares loss

• Estimation Find maximum likelihood estimate of parameters

They are all the same thing…



Recap: Maximum Likelihood Estimation

Suppose we observe N data points from a Gaussian model 
𝒩(𝜇, 𝜎2) and wish to estimate its mean parameter 𝜇

Likelihood Principle: Given a statistical model, the likelihood function describes 
how well a parameter “supports” the observed data (evidence)

29https://towardsdatascience.com/maximum-likelihood-estimation-984af2dcfcac



Recap: MLE of Gaussian Mean

Assume data are i.i.d. univariate Gaussian,
Variance is known

Log-likelihood function:

Constant doesn’t 

depend on mean

MLE estimate is least squares estimator:

MLE doesn’t change when we:

1) Drop constant terms (in   )

2) Minimize negative log-likelihood



MLE for Linear Regression

INPUT: X

O
U

T
P

U
T
: 

Y

Recall that the likelihood is Gaussian:

Given training data                     likelihood function 
is given by,

So MLE maximizes the log-likelihood over the whole data as,



MLE for Linear Regression

After simplification, we have,

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/ 

So for Linear Regression, 
MLE = Least Squares 

Estimation

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/


MLE for Linear Regression

Using previous results, MLE is equivalent to 
minimizing squared residuals,

[ Image: Murphy, K. (2012) ]

Some slightly more advanced linear algebra 
gives us a solution,

Ordinary Least Squares (OLS) solution

Derivation a bit involved for lecture but…

• We know it has a closed-form and why

• We can evaluate it

• Generally know where it comes from



Linear Regression Summary

1. Definition of linear regression model,

where

2. For N iid training data fit using least squares,

3. Equivalent to maximum likelihood solution



Linear Regression Summary

Ordinary least squares solution

Is solved in closed-form using the Normal equations,

Design Matrix

( each training input on a column )

Vector of

Training labels



A word on matrix inverses…

Least squares solution requires inversion of the term,

What are some issues with this?

1. Requires             time for D input features

2. May be numerically unstable (or even non-invertible)

Small numerical errors in input

can lead to large errors in solution



Pseudoinverse

The Moore-Penrose pseudoinverse is denoted as 𝑋+

• Generalization of the standard matrix inverse
• If 𝑋⊤𝑋 is invertible, 𝑋+ = 𝑋⊤𝑋 −1𝑋⊤

• Exists even for non-invertible XTX

• Directly computable in most libraries

• In Numpy it is: linalg.pinv

𝑤OLS = 𝑋+𝑦 



Linear Regression in Scikit-Learn

Load your libraries,
For Evaluation

Load data,

Train / Test Split:



Linear Regression in Scikit-Learn

Train (fit) and predict,

Plot regression line with the test set,



Linear regression: extensions

• What if we have multivariate label 𝑦 ∈ ℝ𝑘?
• Conceptually, can think about the prediction from 𝑥 to 𝑦 as 𝑘

separate linear regression problems 

• How to compute MLE if the model is 𝑦 = 𝑤𝑇𝑥 + 𝜖, 𝜖 ∼ other 
distributions beyond Gaussian?

• E.g. 𝜖 is drawn from Laplace(0,1)

• (Exercise)
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Outliers

Squared Error

How does an outlier affect the estimator?

Example: estimate the mean of a population



Outliers

How does an outlier affect the estimator?

Example: estimate the mean of a population

Squared Error



Outliers in Linear Regression

Y

X

Outlier “pulls” 
regression line away 

from inlier data

Need a way to ignore or 
to down-weight impact 

of outlier

https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-multiple-regression/mlr-residual-analysis-and-outliers.html 

https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-multiple-regression/mlr-residual-analysis-and-outliers.html


Dealing with Outliers

Too many outliers can indicate many things: non-Gaussian 
(heavy-tailed) data, corrupted data, bad data collection, …

A few ways to handle outliers…

1. Use a heavy-tailed distribution to model noise (e.g. Student’s t)

Fitting regression becomes difficult

2. Identify outliers and discard them

Perhaps needs to solve a NP-Hard problem & throwing away data is generally bad

3. Penalize extreme weights to avoid overfitting (Regularization)



Y

X

Regularization

Red model is without regularization

Green model is with regularization

Regularization
Strength

Regularization Penalty

Regularization helps avoid overfitting to training data…



Regularized Least Squares

A couple regularizers are so common they have specific names

L2 Regularized Linear Regression

• Ridge Regression

• aka Tikhonov Regularization

L1 Regularized Linear Regression

• LASSO

• Stands for “Least Absolute Shrinkage and Selection Operator”



Regularized Least Squares

Ordinary least-squares estimation (no regularizer),

L2-regularized Least-Squares (Ridge)
Quadratic Penalty

L1-regularized Least-Squares (LASSO) Absolute Value (L1) Penalty

Already know how to 

solve this…



A word on vector norms…

The L2-norm (Euclidean norm) of a vector w is,

The L1-norm (absolute value) of a vector w is,

They are not the same functions…



Other Regularization Terms

A more general regularization penalty: 

L2 RegularizationL1 is non-

differentiable

q<1 is not a norm, 

and thus not convex



L2 Regularized Least Squares

Quadratic

Quadratic

Quadratic + Quadratic = Quadratic

• Differentiable

• Convex

• Unique optimum

• Closed form solution



L2 Regularized Least Squares : Simple Case

Derivative (+ chain rule)

Distributive Property

Algebra



L2 Regularized Linear Regression – Ridge Regression

After some algebra…

Compare to ordinary least squares:

Source: Kevin Murphy’s Textbook

Regularized least-squares can be viewed as 
OLS with additional pseudo-training examples



Notes on L2 Regularization

• Feature weights are “shrunk” towards zero (and each other) –
statisticians often call this a “shrinkage” method

• Typically do not penalize bias (y-intercept, 𝑤0) parameter,

• This way the solution will be invariant to data shifting 

• Solutions are not invariant to scaling, so typically we standardize (e.g.
Z-score) features before fitting model ( Sklearn StandardScaler )



Scikit-Learn : L2 Regularized Regression 

Alpha is what we have been calling  



Scikit-Learn : L2 Regularized Regression

Define and fit OLS and L2 regression,

Plot results,

L2 (Ridge) reduces impact of any single data point



Choosing Regularization Strength

We need to tune regularization strength to avoid over/under fitting…

High regularization reduces model 
complexity: increases bias / decreases 

variance

How should we properly tune   ?

Recall bias/variance tradeoff
Error = Bias2 + Variance



Cross-Validation

Source: Bishop, C. PRML

N-fold Cross Validation Partition training 
data into N “chunks” and for each run 
select one chunk to be validation data

For each run, fit to training data (N-1 
chunks) and measure accuracy on 

validation set.  Average model error 
across all runs.

Drawback Need to perform training N times.



Model Selection for Linear Regression

A couple of common metrics for model selection…

Residual Sum-of-squared Errors The total squared residual 
error on the held-out validation set,

Coefficient of Determination Also called R-squared or R2.  
Fraction of variation explained by the model. 

Model selection metrics are known as “goodness of fit” measures



Coefficient of Determination R2

Variance unexplained by

Regression model 

Total variance

in dataset

Residual Sum-of-Squares

Variance using avg. prediction

Where: is the average output



Coefficient of Determination R2

Maximum value R2=1.0 means 
model explains all variation in the 

data

Maximum value R2=0 means model is 
as good as predicting average 

response

R2<0 means model is worse than 
predicting average output

R2 = 0

R2 > 0



“Shrinkage” Feature Selection

Down-weight features that are not useful for prediction…

Quadratic penalty            down-weights 
(shrinks) features that are not useful for 

prediction

Example Prostate Cancer Dataset measures 
prostate-specific cancer antigen with features: 
age, log-prostate weight (lweight), log-benign 
prostate hyperplasia (lbph), Gleason score 
(gleason), seminal vesical invasion (svi), etc.

L2 regularization learns zero-weight 

for log capsular penetration (lcp)

[ Source: Hastie et al. (2001) ]



Regularized regression: Constrained Optimization Perspective

[ Source: Hastie et al. (2001) ]

Squared Error

Total Weight 

Norm

Optimal Model

• Fact: the solution of

      arg min
𝑤

𝑋𝑤 − 𝑦 2
2 + 𝜆 𝑤 2 , 

  Is equivalent to the solution of the 
constrained optimization problem:

          arg min
𝑤: 𝑤 2≤𝛿(𝜆)

𝑋𝑤 − 𝑦 2
2 

for some 𝛿(𝜆)

L2 penalized regression rarely 
learns feature weight that are 
exactly zero…



Regularized Least Squares

Ordinary least-squares estimation (no regularizer),

L2-regularized Least-Squares (Ridge)

L1-regularized Least-Squares (LASSO)

Quadratic Penalty

Absolute Value (L1) Penalty



L1 Regularized Least-Squares

Squared Error

Optimal Model

Learns w2 = 0

Able to zero-out weights that are not predictive…



Feature Weight Profiles

Varying regularization 
parameter moderates

shrinkage factor

For moderate regularization 
strength weights for many 

features go to zero

• Induces model sparsity

• Ideal for high-dimensional settings

• Gracefully handles p>N case, for p 
features and N training data



Feature Weight Profiles

L1 Penalty L2 Penalty



Learning L1 Regularized Least-Squares

Not differentiable…

…doesn’t exist at x=0

Can’t set derivatives to zero as 
in the L2 case!



Learning L1 Regularized Least-Squares

• Not differentiable, no closed-form solution

• But it is convex!  Can be solved by standard convex 
optimization packages (e.g. CVXPY)

• Efficient optimization algorithms exist

• Least Angle Regression (LAR) computes full solution path
for a range of values 

• Can be solved as efficiently as L2 regression





Specialized methods for cross-validation…

Computes solution using coordinate descent

Uses least angle regression (LARS) to compute solution path



L1 Regression Cross-Validation

Perform L1 Least Squares (LASSO) 20-fold cross-validation,

Plot solution path for range of alphas,

All alphas_

Learned alpha_  (no “s”… annoying…)

or
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Classification as Regression

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28 

Suppose our response variables are binary y={0,1}.  How can we use 
linear regression ideas to solve this classification problem?

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28


Least squares classification: classification as regression

Idea Fit a least-square linear regressor 
𝑤 to the data (red).  Classify points 
based on whether they are above or 
below the midpoint (green).

• This is a discriminant function, since it discriminates between classes

• It is a linear function and so is a linear discriminant

• We can call this approach least squares classification

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28 

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28


Least squares classification: rationale

Recall the linear regression model,

So linear regression aims at predicting the expected value of 𝑦 given 𝑥,

Recall: Bayes optimal classifier 

Thus                                  should closely approximate the Bayes optimal 
classifier 

(Why?)



With 𝑌𝑘 = 1 if example is of class k, 

e.g. for K=5, class 3, Y=(0,0,1,0,0).

Least squares classification: multiclass setting

Suppose we have K classes.  Each example’s
label is represented by an indicator vector,

For N training inputs create NxK matrix of outputs     and solve,

W is NxK matrix of K linear regression models, 

each column is for a different class

• Compute fitted output                         a K-vector

• Identify largest component and classify as,

[ Image: Hastie et al. (2001) ]

This is an instance of 

multi-output linear

regression



Linear Probability Models

Binary Classification Linear model approximates 
probability of class assignment,

Multiclass Classification Multiple decision boundaries, 
each approximated by the class-specific linear model,

Where        is kth column of 𝑊 

Approximates probability of class assignment,

Any drawback with this approach?

Drawback: 𝑤𝑇𝑥, 𝑊𝑘,:
𝑇 𝑥 not guaranteed to be in [0,1]!



Logistic Regression

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28 

Idea Distort the prediction score in 
some way to map to [0,1] so that it is 
actually a probability.

Uses the logistic function, 

• Prediction now actually maps to a valid probability

• Logistic function is a type of sigmoid or squashing function, since it maps any 
value to the range [0,1]

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28


Logistic Regression: Decision Boundary

Bayes optimal prediction: 

Predict 1 ⇔ 𝑃 𝑦 = 1 𝑥 ≥ 0.5

⇔ (odd ratio)
𝑃 𝑦 = 1 𝑥

𝑃 𝑦 = 0 𝑥
≥ 1

⇔ ln
𝑃 𝑦 = 1 𝑥
𝑃 𝑦 = 0 𝑥

≥ 0

Observe: logistic regression models:  

This induces a linear decision 
boundary

Logistic regression gives a linear classifier



Logistic vs. Logit Transformations

Logistic Function Logit Function

Maps                 to [0,1] Maps [0,1] to 

Logistic also widely used in Neural Networks – for classification last 
layer is typically just a logistic regression



Logistic vs. Logit Transformations

Logistic function maps the linear prediction score to the interval [0,1],

Logit function is defined for probability values p in [0,1] as,

Logit is the inverse of the logistic function, Logit is also the log-likelihood

ratio, and thus induces decision 

boundary for our binary classifier



Multiclass Logistic Regression

Classification decision based on log-odd-ratio compared to final class,

Choice of denominator class is arbitrary, but use K by convention

‘s sum to 1



Least Squares vs. Logistic Regression

• Both models learn a linear decision boundary

• Least squares can be solved in closed-form (convex objective)

• Least squares is sensitive to outliers (need to do regularization)

Least Squares

Logistic Regression

[Source: Bishop “PRML”]



Least Squares vs. Logistic Regression

Similar qualitative comparisons in 1-dimension

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28 

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28


Least Squares vs. Logistic Regression

[Source: Bishop “PRML”]

Least Squares Logistic Regression



Logistic Regression: Model Training

Fit by maximum likelihood—start with the binary case

Posterior probability of class assignment is Bernoulli,

Given N iid training data pairs the log-likelihood function is,

Recall: how is this defined?



Fitting Logistic Regression

This is a convex optimization problem => stationary points are optimal

Computing the derivatives with respect to each element wd,

• For D features this gives us D equations and D unknowns

• But equations are nonlinear and can’t be solved

• Can use standard convex optimization toolbox (CVXPY) to solve it

• Can also be solved with Newton’s method (Iterative Weighted Least 
Squares)

https://retostauffer.github.io/Rfoehnix/articles/logisticregression.html



Checking convexity – a toolkit

• How to check if function 𝑓 is convex?
• Idea 1: checking definition 

• for all 𝑢, 𝑣, 𝛼 ∈ [0,1], 𝑓 𝛼𝑢 + 1 − 𝛼 𝑣 ≤ 𝛼𝑓 𝑢 + 1 − 𝛼 𝑓 𝑣

• Idea 2: checking second order derivative 
• Fact: for univariate, 2nd order differentiable 𝑓, 𝑓 is convex ⇔ 𝑓′′ 𝑢 ≥ 0 for 

all 𝑢

• E.g. 𝑓(𝑧) = ln(1 + 𝑒𝑧)

• How about multivariate 𝑓?



Checking convexity – a toolkit

• Fact: for multivariate, 2nd order differentiable 𝑓, 𝑓 is convex ⇔
its Hessian ∇2𝑓 𝑢 ≽ 0 for all 𝑢

• ≽: positive semidefinite (psd) partial order (Loewner order)  
• 𝐴 ≽ 0 ⇔ 𝐴 is psd

• Exercise: verify that 

is concave in 𝑤 by checking its Hessian

• Is there an easier way?



Checking convexity – a toolkit

• Linear functions are both convex and concave

• Norms are convex 

• If f, g be convex, then
• max{f(x), g(x)} is convex
• f(x) + g(x) is convex
• if g is nondecreasing, then h(x) := g(f(x)) is convex  => e.g., ℎ 𝑤 = 𝑤 2

• f is concave, g is convex and nonincreasing, then h(x) := g(f(x)) is convex. 
e.g., ℎ 𝑥 =

1

log(1+𝑥)
, 𝑥 ≥ 0

• Convexity is invariant under affine maps:
if f is convex, then 𝑓 𝐴𝑥 + 𝑏 is also convex where 𝐴 ∈ ℝ𝑛×𝑑 , 𝑏 ∈ ℝ𝑛



Can also incorporate regularization 

in logistic regression



Scikit-Learn Logistic Regression

Function predict_proba(X) returns prediction of class 
assignment probabilities (just a number in binary case)

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28 

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28


Using Logistic Regression

The role of Logistic Regression differs in ML and Data Science,

• In Machine Learning we use Logistic Regression for building predictive 
classification models

• In Data Science we use it for understanding & interpreting how 
features relate to data classes / categories

Example South African Heart Disease (Hastie et al. 2001) 
Data result from Coronary Risk-Factor Study in 3 rural areas of South 
Africa.  Data are from white men 15-64yrs and response is 
presence/absence of myocardial infraction (MI).  How predictive are 
each of the features?



Looking at Data
Each scatterplot shows 

pair of risk factors.  Cases 
with MI (red) and without

(cyan)

Features

• Systolic blood pressure

• Tobacco use

• Low density lipoprotein (ldl)

• Family history (discrete)

• Obesity

• Alcohol use

• Age

[Source: Hastie et al. (2001)]



Example: African Heart Disease

Remember All correlations / significance of features are based 
on presence of other features.  We must always consider that 

features are strongly correlated.

Obesity is not significant and 
negatively correlated with heart 

disease in the model

Finding Systolic blood 
pressure (sbp) is not a 
significant predictor



Example: African Heart Disease

Doing some feature selection
we find a model with 4 

features: tobacco, ldl, family 
history, and age

• Tobacco is measured in total lifetime usage (in kg)

•  Thus, increase of 1kg of lifetime tobacco yields

How to interpret coefficients?  
(e.g. tobacco → 0.081)

Or 8.4% increase in odds of coronary heart disease

• 95% CI is 3% to 14% since



Outline

➢ Linear Models for Regression
➢Least Squares Estimation

➢Regularized Least Squares

➢Linear Models for Classification 
➢Logistic Regression

➢Support Vector Machine 



Linear Decision Boundary

Any boundary that separates classes is equivalently good on training data

Are they equally good on unseen test data?

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

http://www-bcf.usc.edu/~gareth/ISL/


Classifier Margin

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

The margin measures minimum 
distance between each class and the 

decision boundary

Observation Decision boundaries with 
larger margins are more likely to 
generalize to unseen data

Idea Learn the classifier with the largest 
margin that still separates the data…

…we call this a max-margin classifier

http://www-bcf.usc.edu/~gareth/ISL/


Max-Margin Classifier

Recall that the linear model is given by

Let classes be              so classification 
rule is, 

Decision boundary is now at 𝑓(𝑥)  =  0 and 
distance of 𝑥 to it is: 

Where the norm of the weights is 

Known as the distance from a 

point to a plane equation:

wiki/Distance_from_a_point_to_a_plane

https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_plane


Max-Margin Classifier

For training data 𝑥𝑛, 𝑦𝑛 , we would like to choose (𝑤, 𝑏) to ensure two 
properties:

(1) all points are correctly classified: 

𝑦𝑛 𝑤⊤𝑥𝑛 + 𝑏 > 0, 𝑛 = 1, … 𝑁

(2) the margins of all points 
𝑤⊤𝑥𝑛+𝑏

‖𝑤‖
, 𝑛 = 1, … 𝑁 are as large as possible

This motivates the following optimization problem (O1): 

   maximize
𝑤.𝑏

min
𝑛

𝑤⊤𝑥𝑛+𝑏

𝑤

                           subject to: 𝑦𝑛 𝑤⊤𝑥𝑛 + 𝑏 > 0, 𝑛 = 1, … 𝑁 



Constrained optimization

min
𝑤

𝑓(𝑤)

𝑠. 𝑡. 𝑔𝑖 𝑤 ≤ 0, ∀𝑖 = 1, … , 𝑘 (inequality constraints) 

ℎ𝑗 𝑤 = 0, ∀𝑗 = 1, … , ℓ (equality constraints) 

• When 𝑓 is convex and 

the constraint set is a convex set 

=> convex optimization problem

=> efficient solvers abound

• Is (O1) a convex optimization problem?

• If not, can we convert it to one?



Max-Margin Classifier (cont’d)

(O1) maximize
𝑤.𝑏

min
𝑛

𝑤⊤𝑥𝑛+𝑏

𝑤

subject to: 𝑦𝑛 𝑤⊤𝑥𝑛 + 𝑏 > 0, 𝑛 = 1, … 𝑁

• Note: under perfect classification, 
𝑤⊤𝑥𝑛+𝑏

𝑤
=

𝑦𝑛 𝑤⊤𝑥𝑛+𝑏

𝑤
for all 𝑛

• Therefore, (O1) is equivalent to (O2): 

maximize
𝑤.𝑏

min
𝑛

𝑦𝑛 𝑤⊤𝑥𝑛+𝑏

𝑤

subject to: 𝑦𝑛 𝑤⊤𝑥𝑛 + 𝑏 > 0, 𝑛 = 1, … 𝑁

Minimum margin

Perfect classification



Max-Margin Classifier

• (O2): 

maximize
𝑤.𝑏

min
𝑛

𝑦𝑛 𝑤⊤𝑥𝑛+𝑏

𝑤
subject to: 𝑦𝑛 𝑤⊤𝑥𝑛 + 𝑏 > 0, 𝑛 = 1, … 𝑁

• Infinitely many solutions – if 𝑤, 𝑏 is optimal, then 2𝑤, 2𝑏 is also 
optimal (for example) 

• Break ties: add the constraint that min
𝑛

𝑦𝑛 𝑤⊤𝑥𝑛 + 𝑏 = 1

• To solve (O2), it suffices to solve (O3): 

maximize
𝑤.𝑏

min
𝑛

𝑦𝑛 𝑤⊤𝑥𝑛+𝑏

𝑤
subject to: min

𝑛
𝑦𝑛 𝑤⊤𝑥𝑛 + 𝑏 = 1



SVM derivation (3)

• Summary: the constraint encodes (1) correct classification (2) there are 
no two solutions that represent the same hyperplane!

• Note: If 𝑤, 𝑏 is a solution, then the minimum margin is 
1

𝑤
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max
𝑤,𝑏

min𝑖=1
𝑛 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏

𝑤
𝑠. 𝑡.  min

𝑖
 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 = 1

min
𝑤,𝑏

𝑤 2

s. t.  𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖
Final formulation in the linearly separable setting:

(O3)

max
𝑤,𝑏

1

𝑤
𝑠. 𝑡.  min

𝑖
 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 = 1

(turns out to be equivalent..)

max
𝑤,𝑏

1

𝑤
𝑠. 𝑡.  min

𝑖
𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1

max
𝑤,𝑏

1

𝑤
𝑠. 𝑡.  𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖



Support Vector Machine (Primal)

To learn the classifier, we solve the following constrained 
optimization problem…

This is a convex optimization problem that can be 
solved efficiently 

Why? check back “constrained optimization” slide

• Data are D-dimensional vectors

• Margins determined by nearest data points called support vectors

• We call this a support vector machine (SVM) 

This is known as the

primal optimization



SVM in the nonseparable setting: Soft-margin 

• What if data are not linearly separable? 

• Introduce ’slack’ variables

• Again, a convex optimization problem

• Fix any 𝑤, 𝑏, what is the optimal 𝜉?

𝜉𝑖 = 0 if 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1, and 𝜉𝑖 = 1 − 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 otherwise
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min
𝑤,𝑏

𝑤 2

𝑠. 𝑡.  𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖

min
𝑤,𝑏,{𝜉𝑖≥0}

𝑤 2 + 𝐶 ෍

𝑖=1

𝑛

𝜉𝑖

𝑠. 𝑡.  𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , ∀𝑖

// 𝐶 is a hyper-parameter

min
𝑤,𝑏

 𝑤 2 + 𝐶 ෍

𝑖=1

𝑛

1 − 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏
+

⟺ Regularized hinge loss minimization



SVM in Scikit-Learn

SVM with linear decision boundaries,

sklearn.svm.LinearSVC

Call options include…

Other options for controlling optimizer (e.g. convergence tolerance ‘tol’)

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC


Learning linear models: unified view

• All model training in this lecture can be
viewed as regularized loss minimization

ෝ𝑤 = argmin𝑤∈ℝ𝑑 σ𝑖=1
𝑛 ℓ 𝑤; 𝑥𝑖 , 𝑦𝑖 + 𝜆 𝑅(𝑤)

• ℓ: loss function – logistic / hinge / square / ..

• 𝑅: regularizer – L1 / L2 / Lq / …

• Can oftentimes be optimized by (stochastic) gradient descent & 
friends very efficiently

• E.g. see Allen-Zhu’s ICML 2017 tutorial

https://www.youtube.com/watch?v=jPjhiaeYruQ


Next lecture

• Nonlinear models: kernel methods

• Assigned reading: CIML Chap. 11



Backup



Next lecture

• Nonlinear models: kernel methods

• Assigned reading: CIML Chap. 11



Linear Decision Boundary

Least squares regression yields decision boundary based on least 
squares solution…

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

http://www-bcf.usc.edu/~gareth/ISL/


Multivariate Quadratic Form

Quadratic form for vectors is 
given by inner product,

For iid data MLE of Gaussian 
mean is once-again least 

squares,
• Strongly convex

• Differentiable

• Unique optimizer at zero gradient



Notation

Substitute multi-dimensional linear regression…

…brings us back to the least squares solution



Pseudoinverse

The Moore-Penrose pseudoinverse is denoted,

• Generalization of the standard matrix inverse

• Exists even for non-invertible XTX

• Directly computable in most libraries

• In Numpy it is: linalg.pinv



Notes on L2 Regularization

• Feature weights are “shrunk” towards zero (and each other) –
statisticians often call this a “shrinkage” method

• Typically do not penalize bias (y-intercept, 𝑤0) parameter,

• Penalizing 𝑤0 would make– adding a constant c to Y would not add a 
constant to solution weights

• Can fit bias in a two-step procedure, by centering features              
then bias estimate is 

• Solutions are not invariant to scaling, so typically we standardize (e.g.
Z-score) features before fitting model ( Sklearn StandardScaler )



Moving to higher dimensions…

In higher dimensions Line → Plane

Multiple ways to define a plane, we 
will use:

Normal Vector

(controls orientation)

In-Plane Vector

(handles offset)

Source: http://www.songho.ca/math/plane/plane.html 

http://www.songho.ca/math/plane/plane.html


Classification as Regression

• This is a discriminant function, since it discriminates between classes

• It is a linear function and so is a linear discriminant

• Green line is the decision boundary (also linear)

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28 

Recall our linear regression can be 
used for classification via the rule,

Generalizes to

higher-dimensional

features

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28


Classification as Regression

Idea Fit a least-square linear regressor 
𝑤 to the data (red).  Classify points 
based on whether they are above or 
below the midpoint (green).

• This is a discriminant function, since it discriminates between classes

• It is a linear function and so is a linear discriminant

• We can call this approach least squares classification

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28 

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28


Least squares classification: rationale

Recall the linear regression model,

So linear regression models the expected value,

Recall: Bayes optimal classifier 



Linear Probability Models

Binary Classification Linear model approximates 
probability of class assignment,

Multiclass Classification Multiple decision boundaries, 
each approximated by the class-specific linear model,

Where        is kth row

Approximates probability of class assignment,



Notation

Likelihood of linear basic regression model…

…we will just look at learning mean parameter for now



Multivariate Gaussian Distribution

Let               with mean             and positive semidefinite covariance 
matrix                 then the PDF is,

We have only seen scalar (1-dimensional) X, but MLE is still least 
squares for higher-dimensional X…

Again, the logarithm is a negative quadratic form,

Constant (in mean) Quadratic Function of mean



What’s the rational?

For discrete values we have that,

Can easily verify that they sum to 1,

But they are not guaranteed to be positive!



Logistic Regression: Decision Boundary

Bayes optimal prediction: 

predict 1 if 𝑝 𝑦 = 1 𝑥 ≥ 0.5

If this ratio is greater than 1.0 then 
classify as C=1, otherwise C=0

In practice, we use the (natural) logarithm of the posterior odds ratio,

This is a linear decision boundary

Logistic regression is a linear classifier



Iteratively Reweighted Least Squares

• Given some estimate of the weights         update by solving,

Design Matrix

(NxD)

NxN Diagonal

Weight matrix

Where z is the gradient direction, P(y=1|x) for each

training point

• Essentially solving a reweighted version of least squares,

Each iteration changes W 

and p so need to resolve



Choice of Optimizer

https://www.datasciencecentral.com/profiles/blogs/an-overview-of-gradient-descent-optimization-algorithms 

Since Logistic regression 
requires an optimizer, there are 
more parameters to consider

The choice of optimizer and 
parameters can affect time to 

fit model (especially if there are 
many features)

https://www.datasciencecentral.com/profiles/blogs/an-overview-of-gradient-descent-optimization-algorithms


Example: African Heart Disease

Fit logistic regression to the 
data using MLE estimate via 

iterative reweighted least 
squares

Standard error is estimated 
standard deviation of the 

learned coefficients

Recall, Z-score of weights is a random variable from standard Normal,

Thus anything with Z-score > 2 is significant at 5% confidence level



Support Vector Machine (Dual)

SVM Dual Problem Find the support vectors (set of constraints that 
hold with equality) that define the largest margin

Support vectors are tight to the margin, 
and satisfy constraints with equality:

All other points are outside the margin 
and constraints are loose:



Max-Margin Classifier

For training data we only care about the margin for correctly-
classified points where,

The margin of correctly-classified points is then given by,

Maximize margin over correctly-classified data points,



Nonlinear Max-Margin Classifier

[ Source: Bishop, C. PRML]

Decision boundary is linear in the transformed data, but 
nonlinear in the original data space

Just as in the linear models we can 
introduce basis transformations,

Max-margin learning is similar,



Facts on vectors

• (Lem 1) a vector 𝑥 has distance 
𝑤⊤𝑥

𝑤
to the hyperplane 𝑤⊤𝑥 = 0

• How about with bias? 𝑤⊤𝑥 + 𝑏 = 0

• Let us be explicit on the bias: 𝑓 𝑥; 𝑤, 𝑏 = 𝑤⊤𝑥 + 𝑏

• recall: 𝑤 is orthogonal to the hyperplane
𝑤⊤𝑥 + 𝑏 = 0

• why? (left as exercise)

134

𝑥⊥

𝑧



Facts on vectors

• (Lem 2) 𝑥 has distance 
𝑤⊤𝑥+𝑏

𝑤
to the hyperplane 𝑤⊤𝑥 + 𝑏 = 0

135Figure from Pattern Recognition and Machine Learning, Bishop

𝑦 𝑥 ≔ 𝑤⊤𝑥 + 𝑏

claim1 : 𝑥 can be written as 𝑥 = 𝑥⊥ + 𝑟
𝑤

‖𝑤‖
  where 𝑥⊥ is the 

projection of 𝑥 onto the hyperplane.

claim2 : then, 𝑟  is the distance between 𝑥 and the hyperplane

Solving for 𝑟:  𝑤⊤𝑥 + 𝑏 = 𝑤⊤𝑥⊥ + 𝑟
𝑤⊤𝑤

𝑤
+ 𝑏 = 𝑟‖𝑤‖.

this implies 𝑟 =
|𝑤⊤𝑥+𝑏|

‖𝑤‖

−
𝑤0

‖𝑤‖



Nonlinear Max-Margin Classifier

Data Space Basis Space

Decision boundary is linear in the transformed data, but 
nonlinear in the original data space



Max-Margin Classifier

Learning objective is hard to solve in this form…

But we can scale parameters               and             without changing 
margin…so we can set the nearest point to the margin so that,

And for all other points not near the margin,

Now we just have to satisfy these constraints…



SVM derivation (2)

• It’s actually a matter of removing ‘duplicates’; ∃ many (w,b)’s that actually represent
the same hyperplane.

• Quick solution

• For any solution ෝ𝑤, ෠𝑏 , let 𝑥𝑖∗ be the closest to the hyperplane ෝ𝑤𝑥𝑖 + ෠𝑏 = 0

• Imagine rescaling ෝ𝑤, ෠𝑏 so that ෝ𝑤⊤𝑥𝑖∗ + ෠𝑏 = 1

• We can always do that, but can we find a formulation that automatically finds that 
modified solution? 

• add  the constraint min
𝑖

𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 = 1

138

ෝ𝑤, ෠𝑏 = max
𝑤,𝑏

min𝑖=1
𝑛 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏

𝑤

= achieves the smallest margin



SVM derivation (1)

• Margin of (𝑤, 𝑏) over all training points: 𝛾′(𝑤, 𝑏) = min
𝑖

𝑤⊤𝑥𝑖+𝑏

𝑤

• Choose (𝑤, 𝑏) with the maximum margin? .. wait, we also want it to be a perfect classifier

• redefine it

𝛾(𝑤, 𝑏) = min
𝑖

𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏

𝑤

• Choose 𝑤 with the maximum margin (and perfect classification)

ෝ𝑤, ෠𝑏 = max
𝑤,𝑏

min𝑖=1
𝑛 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏

𝑤
• One more issue: still, infinitely many solutions..!

139



Max-Margin Classifier (cont’d)

maximize
𝑤.𝑏

min
𝑛

𝑤⊤𝑥𝑛+𝑏

𝑤

subject to: 𝑦𝑛 𝑤⊤𝑥𝑛 + 𝑏 > 0, 𝑛 = 1, … 𝑁

• Note: under perfect classification, 
𝑤⊤𝑥𝑛+𝑏

𝑤
=

𝑦𝑛 𝑤⊤𝑥𝑛+𝑏

𝑤

• Turns out: (O1) is equivalent to (O2): 

maximize
𝑤.𝑏

min
𝑛

𝑦𝑛 𝑤⊤𝑥𝑛+𝑏

𝑤

Minimum margin

Perfect classification



Max-Margin Classifier

Minimum margin over

all training data

Maximize the

minimum margin

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

Find the parameters (w,b) that maximize the smallest 
margin over all the training data

http://www-bcf.usc.edu/~gareth/ISL/


Max-Margin Classifier

• (O2): 

maximize
𝑤.𝑏

min
𝑛

𝑦𝑛 𝑤⊤𝑥𝑛+𝑏

𝑤

• Infinitely many solutions – if 𝑤, 𝑏 is optimal, then 2𝑤, 2𝑏 is 
also optimal (for example) 

• Break ties: add the constraint that min
𝑛

𝑦𝑛 𝑤⊤𝑥𝑛 + 𝑏 = 1

• To solve (O2), it suffices to solve (O3): 

maximize
𝑤.𝑏

min
𝑛

𝑦𝑛 𝑤⊤𝑥𝑛+𝑏

𝑤

subject to: min
𝑛

𝑦𝑛 𝑤⊤𝑥𝑛 + 𝑏 = 1



SVM derivation (3)

• Summary: the constraint encodes (1) correct classification (2) there are 
no two solutions that represent the same hyperplane!

• Note: If ෝ𝑤, ෠𝑏 is a solution, then the margin is 
1

ෝ𝑤
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max
𝑤,𝑏

min𝑖=1
𝑛 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏

𝑤
𝑠. 𝑡.  min

𝑖
 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 = 1

max
𝑤,𝑏

1

𝑤
𝑠. 𝑡.  min

𝑖
 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 = 1

max
𝑤,𝑏

1

𝑤
𝑠. 𝑡.  min

𝑖
𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1

max
𝑤,𝑏

1

𝑤
𝑠. 𝑡.  𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖

min
𝑤,𝑏

𝑤 2

s. t.  𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖
Final formulation in the linearly separable setting:

(quadratic programming)

(turns out to be equivalent..)

(O3)



Support Vector Machine (Primal)

To learn the classifier, we solve the following constrained 
optimization problem…

This is a convex (quadratic) optimization 
problem that can be solved efficiently

• Data are D-dimensional vectors

• Margins determined by nearest data points called support vectors

• We call this a support vector machine (SVM) 

This is known as the

primal optimization



Univariate Gaussian (Normal) Distribution

Gaussian (a.k.a. Normal) distribution with 
mean (location)    and variance (scale)     
parameters,

P
D

F

The logarithm of the PDF is just a negative 
quadratic,

Constant in mean Quadratic Function of mean

Log- PDF
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