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Recap of last 2 lectures

* Classification performance beyond error rates
« How Is TPR defined?
* How Is ROC curve defined?

* Reliable model evaluation & comparison
« Confidence interval
* Hypothesis testing

* Debugging ML algorithms
» Assessing data size & quality
 Learning algorithm implementation

e Blas-variance tradeoff
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OUTPUT: Y

Linear Regression

Regression Learn a function that
predicts outputs from Inputs,

y = f(x)

Outputs y are real-valued

Linear Regression As the name
suggests, uses a linear function:

y=wlz+b

| |
0 1

INPUT: X

2 e We will consider noise in data later...



Linear Regression

Where is linear regression useful?
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Stock Prediction Climate Models
Massie and Rose (1997)

Trendlines

Used anywhere a linear relationship is assumed
between continuous Iinputs / outputs



Line Equation

Recall the equation for a line has a
slope and an intercept,

(\{)4% y:w.x_l_b

/7

Slope Intercept

Intercept (b) indicates where line crosses y-axis

/]

Slope controls angle of line

Positive slope (w) = Line goes up left-to-right

Negative slope = Line goes down left-to-right




imension >= 2

di

Inear regression Iin

L

+b=(w,x)+b

W1'X1+W2‘x2

h(x)

©
(0p)
@
5
D
=
D
S
O
Re
C
T
(@)
X
+ o
—~ C
= ©
= 2
~ O
__W
= &

AR
AN

AR

BT
AN
\

i

N

X1



Inner Products

Recall the definition of an inner product:

T

W r=wiT1 +WoTo + ... +WpHIpP

D
= E WA
d=1

Projection of one vector onto another,

T ~

w' & = |wl|cos 6 where 2 =1y = T

Unit Vector




Linear Regression

For D-dimensional input vector =z € R” the
plane equation,

y=wlz+b

Sometimes we simplify this by including the
Intercept into the weight vector,

(o) [ o)

v ) U

[ Image: Mu_rphéy; K (2012) ]




Modeling Noise In Data

Gaussian (a.k.a. Normal) distribution with
mean (location) ;. and variance (scale) o~

parameters,
ettt L L L L I‘ 'I' '

1 RV 10| o |
W= T gl il Lo
2> H=0, 0?=50, =— |
2 — | =—2 (0?2205, =—
We say X ~ N (X | u,0?) Sk
> I i
Useful Properties sl ;

 Closed under independent addition: § 02
X ~N(pg,02) Y ~N(uy,0;) X,Yindepdent * OO_ ]
X +Y ~ Nz + pry, 03 + o) o :

* Closed under linear transformation (a and b constant):
aX +b~ N(ap, +b,a%02)



Linear Regression

Input-output mapping Is not exact, so we will

assume data has zero-mean Gaussian noise,

Multivariate Normal
(uncorrelated)

y=w'z+e where e~ N(0,0?%)

This Is equivalent to:

p<y ‘ w,x) — N(y ‘ wTajaOQ) S _;NPLOJT:)1<
Because Adding a constant to a Normal RV is still a Normal RV,

z ~ N(m, P) z4+c~N(m+c,P)

In the case of linear regression z — ¢ and ¢ — w! «



Learning linear regression models

We need to learn the model from data
by learning the regression weights

Data — We have this

|

T Random; Can’t do
y —w X _I_ € < anything about it

Y

Don’t know these;
need to learn them

How to do this?
What makes good
weights?



Learning Linear Regression Models

There are several ways to think about fitting regression:
* Intuitive Find a plane/line that Is close to data
* Functional Find a line that minimizes the least squares loss

« Estimation Find maximum likelihood estimate of parameters

They are all equivalent...



Fitting Linear Regression

® Actual response, y;

B Predicted response, f(x;) = by + b1
e Estimated regression line, f(x)=bo+ b1x
= = Residual, y;-f(x;)

Intuition Find a line that is as
close as possible to every
training data point

The distance from each point
to the line Is the residual

T

/ o '{
Training Output Prediction

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/



https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/
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Least Squares Solution

® Actual response, y;

B Predicted response, f(x;) = by + b1
e Estimated regression line, f(x)=bo+ b1x
= = Residual, y;—f(x;)

Functional Find a line that
minimizes the sum of
squared residuals

Over all the training data,
(i, i) z']i1

Least squares regression

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/



https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/

Optimization basics

Example: maximize f(68) = —a8? + b8 + c with a > 0

It is a quadratic function.
=> finding the 'flat’ point suffices

Compute the gradient and set it equal to O (stationary points)
fl(0)=—-2a0+b => =2

2a

Q: Does this trick of grad=0 work for other functions?
— Yes for maximization of concave functions
or minimization of convex functions

'(=2) = —5.99

(gradient |IIustrat|on)



Convex sets

* [Def] Aset C Is convex if
Vu,v € C,Va € [0,1], we have au+ (1 —a)v € C

convex combination
Line segment between u, v

O &
( =) CX).

19



Convex function: intuition

* Informally,
* A convex function is one that looks “convex” from the bottom
* A convex function has only one “valley”

~ S NV

Convex functions Nonconvex function
« A convex function is one whose epigraph Is a convex set

I'l:.:;:_; I'l:_:-:,'
\_/

A convex function Mot a convex function

20



Convex function: formal definition

* Formally,

[Def] Let C be a convex set. A function f:C = R Is convex if Vu,v € C
and Va € [0,1],

flau+ (1 -a)v) <af(w) + (1 —-a)f(v)

0f(x1) + (1 —0)f(z2)

9331 + (1 — 9)$2 T2

* [Def] Function f 1s said to be concave, It —f IS convex



Optimization basics

What if there is no closed form solution? | Itérative methods for optimization
=> Wil find the global minimum

1 for convex functions (convex optimization)
Example: f(6) = ;x(ax — 2log(x) +2) |, More generally, finds a local minimum but
could also get stuck at stationary points.
f'(0) =ax —log(x) .

‘ f(x) =z sin (2*) 41

No known closed form for ax = log(x) \aA = (=2251)
.-
Iterative methods: /F
- Hillclimbing - gradient descent A/ B
- Newton’s method 2 VS o 3

- Etc. ) (—2) = —5.99

20 = AN Q: find the stationary points and global minimum

-10 0 10
X



Least Squares

mmz —w! ;)

This is just a quadratic functlon...

* Convex => all local minima are global
* Minimum given by zero-derivative
 Can find a closed-form solution

Let's see for scalar case with no bias,

Y = W

|I"I




Least Squares : Simple Case

d
T Z(yz —wx;)* =

Derivative (+ chain rule) — E 2

E : E : 2
Distributive Property 0= Y; r; —w Zl?j
i=1 j=1

Z yza%

J:UJ

Algebra w =

— wx;)(

x,,;):0:>



Least Squares In Higher Dimensions

T_hings are a it more complicated In higher [ Image: Murphy, K. (2012) ]
dimensions and involve more linear algebra, e

/ 1 11 R 1D

1 21 ce oD \ 1
X = y =
\ 1 en1 ... anp yn
Design Matrix Vector of
( each training input on a row) Training labels

Can write regression over all training data more compactly...

Yy — Xw <«<— NXx1 Vector



Least Squares In Higher Dimensions

Least squares can also be written more [ Image: Murphy, K. (2012) ]
compactly, PR P L

N
min 3" (y; — w'z,)? = |y — Xu?
1=1

Some slightly more advanced linear algebra
gives us a solution,

o T —1~T Derivation a bit involved for lecture but...
W = (X X) X Yy  We know it has a closed-form and why

 We can evaluate it
* Generally know where it comes from

Ordinary Least Squares (OLS) solution



Learning Linear Regression Models

There are several ways to think about fitting regression:
* Intuitive Find a plane/line that Is close to data
* Functional Find a line that minimizes the least squares loss

« Estimation Find maximum likelihood estimate of parameters

They are all the same thing...



Learning Linear Regression Models

There are several ways to think about fitting regression:

« Estimation Find maximum likelihood estimate of parameters

They are all the same thing...



Recap: Maximum Likelihood Estimation

Suppose we observe N data points from a Gaussian model
N (u, 0%) and wish to estimate its mean parameter u

Maximum Likelihood Estimation

— model
mm data

— log likelihood

1 I 1 1 1 1 I 1
—8 —6 —4 =2 0 2 4 [} 8 10
Mean

Likelihood Principle: Given a statistical model, the likelihood function describes
how well a parameter “supports” the observed data (evidence)

https://towardsdatascience.com/maximum-likelihood-estimation-984af2dcfcac



Recap: MLE of Gaussian Mean

Assume data are I1.1.d. univariate Gaussian,

|—> Variance is known
y | /vL HN Y | fy O )

Log-likelihood function:

Z]og (\/%70 exp (_%(y@. _ N)202)>

Constant doesn’t 1 N
depend on mean — cohst. — = N2 -2
2 Z ((‘% Hyo ) MLE doesn’t change when we:
=1 1) Drop constant terms (in )
MLE estimate is least squares estimator: 2) Minimize negative log-likelihood
1 N
MLE 2 .
= arg max ——— , — = arg min —
u gmax —o—5 > (yi — 4) g mi Z(y

1=1



MLE for Linear Regression

Given training data {(z;,y;)};-, likelihood function
IS given by,

PUT: Y

N N
log | [ p(yi | zi,w) = logp(yi | wi,w)

OuT

Recall that the likelihood i1s Gaussian:

p(y |w,2) =N(y|w' 2,07

INPUT: X

So MLE maximizes the log-likelihnood over the whole data as,

N N
1
wMtE = arg max Z log N (y; | w' x;,0%) = arg mSX;COHSt ~ 52 Wi~ w' ;)
i—1 =



MLE for Linear Regression

® Actual response, y;

B Predicted response, f(x;) = by + b1
e Estimated regression line, f(x)=bo+ b1x
= = Residual, y;—f(x;)

After simplification, we have,

So for Linear Regression,
MLE = Least Squares
Estimation

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/



https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/

MLE for Linear Regression

Using previous results, MLE is equivalent to [ Image: Murphy, K. (2012) ]
minimizing squared residuals, T %

N
min 3" (y; — w'z,)? = |y — Xu?
1=1

Some slightly more advanced linear algebra
gives us a solution,

o T —1~T Derivation a bit involved for lecture but...
W = (X X) X Yy  We know it has a closed-form and why

 We can evaluate it
* Generally know where it comes from

Ordinary Least Squares (OLS) solution



Linear Regression Summary

1. Definition of linear regression model,
y=w'z+e where e~ N(0,5?)

2. For N iid training data fit using least squares,

N

wO = argmin g (y; — w' x;)*
w
i=1

3. Equivalent to maximum likelihood solution



Linear Regression Summary

Ordinary least squares solution
N

wO = arg min Z:(y2 —w' z;)?

w
1=1

Is solved In closed-form using the Normal equations,

X =

/} in -’;w\ ”
. ?1 2.D y( 3 ) wOLS — (XTX)_ley

YN

\ 1 2w ... awp )

Design Matrix Vector of
( each training input on a column) Training labels



A word on matrix inverses...

,wOLS _ (XTX)—ley
Least squares solution requires inversion of the term,
(X X))~ !
What are some issues with this?

1. Requires O(D?) time for D input features

2. May be numerically unstable (or even non-invertible)

1 | o
(.I'"—G) 1 — > Small numerical errors in input

T _|_ € can lead to large errors in solution




Pseudoinverse

The Moore-Penrose pseudoinverse is denoted as X+

wOLS = x+y

 Generalization of the standard matrix inverse
 If XTX is invertible, X* = (XTX)"1XT

 EXists even for non-invertible XX
* Directly computable in most libraries
*In Numpy itis: linalg.pinv



Linear Regression In Scikit-Learn

_ _ For Evaluation
Load your libraries,

import matplotlib.pyplot as plt .
import numpy as np

from sklearn import datasets, linear model
from sklearn.metrics import mean squared error, r2 score

Load data,

# load the diabetes dataset

diabetes X, diabetes y = datasets.load diabetes(return_X y=True) Samples total 442

Dimensionality 10

# Use only one feature Features reaL -2 <x< .2
diabetes X = diabetes X[:, np.newaxis, 2] Targets Integer 25 - 346
Tra|n / Test Spllt diabetes X train = diabetes X[:-20] diabetes y train = diabetes y[:-20]

diabetes X test = diabetes X[-20:] diabetes y test = diabetes y[-20:]



Linear Regression In Scikit-Learn

Train (fit) and predict,

# Create Llinear regression object
regr = linear model.linearRegression()

.ﬁewm

# Train the model using the training sets
regr.fit(diabetes X train, diabetes y train)

# Make predictions using the testing set
diabetes y pred = regr.predict(diabetes X test)

Coefficients:
[938.23786125]

Plot regression line with the test set, Mean squared error: 2548.07 Y

Coefficient of determination: @_47

# Plot outputs
plt.scatter(diabetes X test, diabetes y test, color="black")
plt.plot(diabetes X test, diabetes y pred, color="blue”, linewidth=3)

plt.xticks(())
plt.yticks(())

plt.show()




Linear regression: extensions

 What if we have multivariate label y € R*?

« Conceptually, can think about the prediction from x to y as k
separate linear regression problems

* How to compute MLE if the model is y = w’x + €, € ~ other
distributions beyond Gaussian?
* E.g. € Is drawn from Laplace(0,1) | p=0.b-

p=0, b=

* (Exercise) 04 i

=
&n

1
2
4
4

o oo O

-10-8 6 4 -2 0 2 4 6 8 10
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Outliers

How does an outlier affect the estimator?
Example: estimate the mean of a population

Squared Error




Outliers

How does an outlier affect the estimator?
Example: estimate the mean of a population

Squared Error




Outliers in Linear Regression

Outlier “pulls”
regression line away
from inlier data

Need a way to ignore or
to down-weight impact
of outlier

https://www.[mp.com/en us/statistics-knowledge-portal/what-is-multiple-regression/mlir-residual-analysis-and-outliers.html



https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-multiple-regression/mlr-residual-analysis-and-outliers.html

Dealing with Outliers

Too many outliers can indicate many things: non-Gaussian
(heavy-tailed) data, corrupted data, bad data collection, ...

A few ways to handle outliers...

1. Use a heavy-tailed distribution to model noise (e.g. Student’s t)
Fitting regression becomes difficult

2. ldentify outliers and discard them

Perhaps needs to solve a NP-Hard problem & throwing away data is generally bad

3. Penalize extreme weights to avoid overfitting (Regularization)



Regularization

Reqularization helps avoid overfitting to fraining data...

Model = min Loss(Model, Data) 4+ A - Regularizer(Model)

;e

97 T~ Regularization Regularization Penalty
Strength

Red model is without regularization

Green model is with regularization




Regularized Least Squares

A couple reqgularizers are so common they have specific names

L2 Regularized Linear Regression
* Ridge Regression
« aka Tikhonov Regularization

L1 Regularized Linear Regression

* LASSO
 Stands for “Least Absolute Shrinkage and Selection Operator”



Regularized Least Squares

Ordinary least-squares estimation (no regularizer),

Already know how to = arg mln E w 337,
solve this...

Quadratic Penalty

. /
A
w? = arg min Z(yf,, — W 3773)2 §||wH2

w
1=1

L1-regularized Least-Squares (LASSQ) Absolute Value (L1) Penalty

L2-regularized Least-Squares (Ridge)

—argmmz —whz)? + Nuw|



A word on vector norms...

The L2-norm (Euclidean norm) of a vector w Is,

D

D
lw|| = Vw'w = \ > wi Jwl* = ) w
d=1

d=1

The L1-norm (absolute value) of a vector w Is,
D
w =) |wdl
d=1

They are not the same functions...



Other Regularization Terms

d
{w : Z lw; |7 < 1}
i=1
! | |

| . -

g<lis not a norm, L1 is non-

_ _ L2 Regularization
and thus not convex differentiable

A more general regularization penalty:

:argmm Z —wlz)? 4+ = Z\wzlq



L2 Regularized Least Squares

Quadratic
N &’j\
wL2 _ arg mru%n Z(y% L wTQCZ)Q _|_ 5 HwH2 ; Sum ofsqL?areserrorcontours forlinear?regression
Y ot -
Quadratic | |
Quadratic + Quadratic = Quadratic ,, | | |
- Differentiable
e Convex - : |
* Unique optimum 4 —

e Closed form solution Wo



L2 Reqgularized Least Squares : Simple Case

N
d 1 ( 2 Ad o,
—— , — WX, | w =
dw 2 “ Yi ’ 2 dw
1=1
Derivative (+ chain rule) p— E QUZE'/L xz) —|— )\’LU — 0 —>
Distributive Property 0= E Yy — W E CC? — AW
i=1 j=1
Algebra w =

)\—|—ij?



L2 Reqgularized Linear Regression — Ridge Regression

Source: Kevin Murphy’s Textbook

N
. A
wL2 = argmq;n Z(yf,, — wTiUi)Q + §||w|\2
i=1
; Sum of squares error contours for Iinearl regression
After some algebra... i
’UJL2 _ (AI + XTX)_IXTy 2| '
] 15) ‘:" : ‘ | |
Compare to ordinary least squares: ;.. |,
w? = (XTX) " Xy TN
Regularized least-squares can be viewed as s |

OLS with additional pseudo-training examples .\ -




Notes on L2 Regularization

* Feature weights are “shrunk” towards zero (and each other) —
statisticians often call this a “shrinkage” method

* Typically do not penalize bias (y-intercept, wy) parameter,

mmg —whx; — wp) +)\E w3
d=1

* This way the solution WI|| be invariant to data shifting

« Solutions are not invariant to scaling, so typically we standardize (e.qg.
Z-score) features before fitting model ( Sklearn StandardScaler)



Scikit-Learn : L2 Regularized Regression

sklearn.linear_model.Ridge

class sklearn.linear_model.Ridge(alpha=1.0, *, fit_intercept=True, normalize="deprecated', copy_X=True, max_iter=None, tol=0.001,

solver="auto’, positive=False, random_state=None) 1 [source]

alpha : {float, ndarray of shape (n_targets,)}, default=1.0
Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and

reduces the variance of the estimates. Larger values specify stronger reqularization. Alpha corresponds to 1 /
(2C) in other linear models such as LogisticRegression or Linearsvc. If an array is passed, penalties are

assumed to be specific to the targets. Hence they must correspond in number.

Alphais what we have been calling )\



Scikit-Learn : L2 Regularized Regression

Define and fit OLS and L2 regression,

2001 — oq1s

175 { — 12
ols=linear model.LinearRegression/() 150 -
ols.fit (X train, y train)
ridge=linear model.Ridge (alpha=0.1) 125 1
ridge.fit (X train, y train) 100 -

0.75 1
Plot results,

0.25 -

0.00 -

fig, ax = plt.subplots()

ax.scatter (X train, y train, s=50, c="black", marker="o") 000 025 050 0/ 100 12 150 175 200
ax.plot (X test, ols.predictix_test}, color="red", label="QLS")
ax.plot (X test, ridge.predict(X test), color="blue", label="L2")

plt.legend/()
plt.show ()

L2 (Ridge) reduces impact of any single data point



Choosing Regularization Strength

We need to tune regularization strength to avoid over/under fitting...

A
_argmmz —wla, 2—|—§||wa2

Recall bias/variance tradeoff
Error = Bias? + Variance

High Bias Low Bias

High regularization reduces model
complexity: increases bias / decreases
variance

Prediction Error

How should we properly tune \?

Model Complexity



Cross-Validation

| | | | | run 1 N-fold Cross Validation Partition training

data into N “chunks” and for each run
I | | | I run 2 select one chunk to be validation data
I | | I I run 3
For each run, fit to training data (N-1
I | | I I run 4
chunks) and measure accuracy on
validation set. Average model error
across all runs.

Drawback Need to perform training N times.

Source: Bishop, C. PRML



Model Selection for Linear Regression

A couple of common metrics for model selection...

Residual Sum-of-squared Errors The total squared residual
error on the held-out validation set,

. T..\2 el
R55 = Z(yi —w )" el T

1=1

2

Coefficient of Determination Also called R-squared or R2.
Fraction of variation explained by the model.

Model selection metrics are known as “goodness of fit” measures




Coefficient of Determination R?

Variance unexplained by

‘M Regression model Residual Sum-of-Squares

N T 2
R2 1 RSS | D imq (Yi — w” ;)
/,SS Y}i—l(yi —7)
Total variance /
In dataset Variance using avg. prediction

1
Where: ¥ = = Zyz IS the average output



Coefficient of Determination R?

RSS y}f\il(yz — ”LUT%)Q
S5O xff\l1(yz — 3/_)2

Maximum value R%=1.0 means
model explains all variation in the
data

Maximum value R?=0 means model is
as good as predicting average
response

Quarterly change in GDP  (A%)

R2<0 means model is worse than 10 05 00 05 10 15 20
pred|Ct|ng average Output Quarterly change in the unemployment rate  (A%)



“Shrinkage” Feature Selection

Down-weight features that are not useful for prediction...

Quadratic penalty \||w||* down-weights
(shrinks) features that are not useful for
prediction

Term LS  Ridge

Example Prostate Cancer Dataset measures
prostate-specific cancer antigen with features:
age, log-prostate weight (lweight), log-benign
prostate hyperplasia (Ibph), Gleason score
(gleason), seminal vesical invasion (svi), etc.

Intercept 2.465 2.452
lcavol  0.680 0.420
lweight  0.263 0.238
age —0.141 —O0.

lbph  0.210 0.

'lcp —0.288 0.000'—— L2 regularization learns zero-weight

gleason —0.021 ~0.040 for log capsular penetration (Icp)
pggdb  0.267 0.13:
[ Source: Hastie et al. (2001) ]



Reqgularized regression: Constrained Optimization Perspective

HllIl E —w

ZC

/////// ;i,/’ \‘I ; /
// ; // / x / /'/
// / {/ ° ”/;/ '/
. w2 // /// j / /ll\] ///// ///
, i
Total Weight YA 7
Norm /o
2 N // o e
Jwl®> =600 [
\ 5 Optimal Model
”LUl’

 Fact: the solution of
arg min I Xw —ylI5 + Allwll,,

Is equivalent to the solution of the
constrained optimization problem:

argmin_[|Xw — y|2
w:lw|l2=6(4)

for some §(4)

L2 penalized regression rarely
learns feature weight that are
exactly zero...

[ Source: Hastie et al. (2001) ]



Regularized Least Squares

Ordinary least-squares estimation (no regularizer),

— arg mm E —w?t LUZ

Quadratic Penalty

. S/

w? = arg mui)n Z(yf,, — ’wT-iUi)Q §||w|\2

1=1

L1-regularized Least-Squares (LASSQ) Absolute Value (L1) Penalty

L2-regularized Least-Squares (Ridge)

—argmmz —whz)? + Nuw|



Optimal Model

Learns w, =0

L1 Regularized Least-Squares

—whx)?

/ / "
// ’/
‘ / / 4 ,/ S //
f/ / f// // A . ////// rd
// // /’r w /// i
/ / J e // /
/ / | // /// /
7 / \ _~ P
/o N
/ | S
a -.\.___ o / ) .
//
| -
| 7
\ 7
\_ -

Able to zero-out weights that are not predictive...



0.6

0.4

0.2

0.0

-0.2

Feature Weight Profiles

0.0 0.2 04 0.6 0.8 1.0

Shrinkage Factor s

Varying regularization
parameter moderates
shrinkage factor

For moderate regularization
strength weights for many
features go to zero

 Induces model sparsity
* |deal for high-dimensional settings

» Gracefully handles p>N case, for p
features and N training data



Coefficients

Feature Weight Profiles

L1 Penalty

Icavol

Svi
Iweight
pgg4s

Ibph

age

0.0 0.2

04 0.6

Shrinkage Factor s

Coefficients

L2 Penalty

lcavol




Learning L1 Regularized Least-Squares

—argmmz —wlx;)? + Mw|

Not differentiable...

v il

...doesn’t exist at x=0

: Can’t set derivatives to zero as
In the L2 case!




Learning L1 Regularized Least-Squares

* Not differentiable, no closed-form solution

* Butitis convex! Can be solved by standard convex
optimization packages (e.g. CVXPY)

 Efficient optimization algorithms exist

* Least Angle Regression (LAR) computes full solution path
for a range of values

» Can be solved as efficiently as L2 regression



sklearn.linear model.Lasso

class sklearn.linear_model.Lasso(alpha=1.0, * fit_intercept=True, normalize="deprecated', precompute=False, copy X=True,
max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection="cyclic’) 1 [source]

Parameters: alpha : float, default=1.0
Constant that multiplies the L1 term. Defaults to 1.0. alpha = @ is equivalent to an ordinary least square,
solved by the LinearRegression Object. For numerical reasons, using alpha = @ with the Lasso object is not
advised. Given this, you should use the LinearRegression object.

fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e.
data is expected to be centered).

precompute : ‘auto’, bool or array-like of shape (n_features, n_features), precompute
Whether to use a precomputed Gram matrix to speed up calculations. The Gram matrix can also be passed as
argument. For sparse input this option is always False to preserve sparsity.

copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.



Specialized methods for cross-validation...

sklearn.linear_model.LassoCV

class sklearn.linear_model.LassoCV(*, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize="deprecated',
precompute="auto’, max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False, n_jobs=None, positive=False,

random_state=None, selection="cyclic") [source]

Computes solution using coordinate descent

sklearn.linear_model.LassolarsCV

class sklearn.linear_model.LassolarsCV(*, fit_intercept=True, verbose=False, max_iter=500, normalize="deprecated",
precompute="auto’, cv=None, max_n_alphas=1000, n_jobs=None, eps=2.220446049250313e-16, copy_X=True, positive=False) 1

[source]

Uses least angle regression (LARS) to compute solution path



L1 Regression Cross-Validation

Perform L1 Least Squares (LASSQO) 20-fold cross-validation,

model = LassoCV(cv=20).fit(X, y) or model = LassolarsCV(cv=20, normalize=False).fit(X, y)

Mean square error on each fold: coordinate descent (train time: 0.38s)
3800 3

Plot solution path for range of alphas, N .
1 1
1
: 1
plt.figure() 3400 - 'ﬁ-
ymin, ymax = 2300, 3800 5 E
plt.semilogx(model.alphas + EPSILON, model.mse path , ":™) g | ——— e,
I I 2
plt . pth( § 3000 4 et :
model.alphas + EPSILON, A” aIphas— 5 i
model.mse path .mean(axis=-1), B s T i
T B o i i
k » 26004 oo iesan T L i0e STTTINTY : . :.' ]
label="Average across the folds", Foseara,, o i
- Average across the folds
linewidth=2, 24001 --- alpha: CV estimate
) 16—2 16—1 160
plt.axvline( a
model.alpha + EPSILON, linestyle="--", color="k", label="alpha: CV estimate”
) <
(1Pl

— Learned alpha_ (no “s”... annoying...)



Outline

> Linear Models for Classification
»Logistic Regression



Classification as Regression

Suppose our response variables are binary y={0,1}. How can we use
linear regression ideas to solve this classification problem?

1 |:| = ':Iﬁ':ﬂ'ﬁ;'ﬁ'ﬁ'*':ﬂ:'ﬁ'::ﬁ':ﬂ':"":""—:"":"'

Purchased
[}
(=]

[}
.

- i, ., e i L

D. |:| - al S .:. s :. S : e :T: F S RETRE, * N .:. B TR, * SR *.:- B T Lo : P .

10.0 12.5 15.0 17.5 20.0 2.5 25.0 27.5
Age

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28
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Least squares classification: classification as regression

Idea Fit a least-square linear regressor
w to the data (red). Classify points
based on whether they are above or
below the midpoint (green).

P ORI, SV AR SORPORN SN SN SN S

= i i i i H H i i
[¥] i i i i ! i i i
o

N2 SIS SUUOROTUURIOS SIGUUNOERORS SAUUUIUNSOUUTON SURURRUUUUUUEr > SANNIE OOV U0 0 SO VSO Filite. U VN VIO SO

20,2 A e

10.0 12.5 150 175 20.0 225 5.0 215

* This Is a discriminant function, since it discriminates between classes
e Itis a linear function and so is a linear discriminant
« We can call this approach least squares classification

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28
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Least squares classification: rationale

Recall: Bayes optimal classifier .

h*(z) =1 (P(y=1]|z)>05) 1"

(Why?)
T

Recall the linear regression model, p(y | z) = N (w! z,0?)

So linear regression aims at predicting the expected value of y given x,

wlz ~E[y|z]=Ply=1]x)

Thus h(z) = I(w! z > 0.5)should closely approximate the Bayes optimal
classifier



Least squares classification: multiclass setting

/3 Suppose we have K classes. Each example’s
s label Is represented by an indicator vector,

Y =(Yi,...,Yk)

With Y, = 1 if example is of class k,
e.g. for K=5, class 3, Y=(0,0,1,0,0).

For N training inputs create NxK matrix of outputs Y and solve,

W — (XTX) —1x Ty Wis NxK matrix of K linear regression models
each column is for a different class

» Compute fitted output f(x) ='W a K-vector -
. _ This is an instance of
* |dentify largest component and classify as, multi-output linear

regression
C' = argmax fr(x)

k [ Image: Hastie et al. (2001) ]



Linear Probability Models

Binary Classification Linear model approximates
probability of class assignment,

wTa = p(y = 1)

20
Age

Multiclass Classification Multiple decision boundaries,
each approximated by the class-specific linear model,

fk(.:v) =W, x Where Wp..is k" column of W

Approximates probability of class assignment,

fr(z) = ply =k | z)

Any drawback with this approach?
Drawback: w'x, W,Z:x not guaranteed to be in [0,1]!



Logistic Regression

Idea Distort the prediction score Iin
some way to map to [0,1] so that it is
actually a probabillity.

f(z) =o(w'z)
Uses the logistic function,

00 e R o(z) = exp(z)

10.0 125 15.0 17.5 2000 22.5 5.0 275 1—|—6Xp(z) /
Age 1 Il g

B A B A ——rr it i ii i

I ISR RUUUUUUUORON SUUSUSRURURU SAUUUSUUOS: SONRUSUOES JUU. GHSRUUUSS SUOUSRRUUE SUSSUURURURIE RSO

 Logistic function is a type of sigmoid or squashing function, since it maps any

value to the range [0,1]

* Prediction now actually maps to a valid probability
f(z) =o(w'z) =ply = 1w, )

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28
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Logistic Regression: Decision Boundary

Bayes optimal prediction:
Predictl1 © P(y=1|x)>0.5

B A B A ——rr it i ii i

P(y=1lx)>

= (oddratlo)P(y — 01 %) >

1

I ISR RUUUUUUUORON SUUSUSRURURU SAUUUSUUOS: SONRUSUOES JUU. GHSRUUUSS SUOUSRRUUE SUSSUURURURIE RSO

e P(y = 1jx)
E s E E s E E & In >0
10.0 125 15.0 175 200 225 5.0 75 P(y = le)

Age

T

w xXr

Observe: logistic regression models: p(y = ljw,z) = o(w'z) = £+,
ply=1|w,xz) T This induces a linear decisior

— In p(y — () ‘ w, gj) boundary

Logistic regression gives a linear classifier



Logistic vs. Logit Transformations

Logistic Function Logit Function
i N I R - = ]
4
2
0.5 0
| - | fa | | |
-6 -4 =2 0 2 4 6
Maps (—o0,o0) to [0,1] Maps [0,1] to (—o0, o0)

Logistic also widely used in Neural Networks — for classification last
layer Is typically just a logistic regression



Logistic vs. Logit Transformations

Logistic function maps the linear prediction score to the interval [0,1],

o(wl'z) = exp(w?! x)

1+ exp(wTx)

Logit function is defined for probability values p in [0,1] as,

logit(p) = log -

Logit Is the inverse of the logistic function, Logit is also the log-likelihood

ratio, and thus induces decision
boundary for our binary classifier

logit(o(w' z)) = wlx



Multiclass Logistic Regression

Classification decision based on log-odd-ratio compared to final class,

=1
log p(C | T) _ wir

X

p(C =K | x)

C =2
logp( ‘$>:wg

p(C =K | x)

p(C=1i|x)'ssumto 1

X

Choice of denominator class is arbitrary, but use K by convention



Least Squares vs. Logistic Regression

4

« Both models learn a linear decision boundary
* Least squares can be solved in closed-form (convex objective)
 Least squares Is sensitive to outliers (need to do regularization)

[Source: Bishop “PRML”]



Least Squares vs. Logistic Regression

Similar qualitative comparisons in 1-dimension

Purchased

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28
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Least Squares vs. Logistic Regression

Least Squares Logistic Regression

[l

[Source: Bishop “PRML”]



Logistic Regression: Model Training

Fit by maximum likelihood—start with the binary case

Recall: how is this defined?

Posterior probability of class assign t is Bernoulli,

ply |z, w)=ply=1]|z,w)1-ply=1|z,w)t¥
Given N iid training data pairs the log-likelihood function is,

Ly(w) = Zlogp(y,,; | i, w)
i=1
- Z {yilogp(y; = 1| x4, w) + (1 —y;)logp(y; =0 | i, w)}

B i {?Jz log o (w' z;) + (1 — y;) log(1 — U(”‘UT%))}

— Z {yinmi — log (1 ew%i)}




Fitting Logistic Regression

wMHE = arg max Z {yinxi — log (1 + emei) }

This is a convex optimization problem => stationary points are optimal
Computing the derivatives with respect to each element w;,

T
’LUiEi

Tai | Y = (
3wd Z di \ Ji 1 + ew! @

 For D features this gives us D equations and D unknowns
« But equations are nonlinear and can’t be solved
» Can use standard convex optimization toolbox (CVXPY) to solve it

» Can also be solved with Newton’s method (lterative Weighted Least
Squares)
https://retostauffer.github.io/Rfoehnix/articles/logisticregression.html



Checking convexity — a toolkit

* How to check if function f Is convex?

* |dea 1: checking definition
e forallu,v,a € [0,1], flau+ (1 —a)v) < af(u) + (1 —a)f(v)
* |dea 2: checking second order derivative
« Fact: for univariate, 2"d order differentiable f, f is convex & ' (u) = 0 for

\ | /

N

‘E.g. f(z) = In(1 + e?) '
* How about multivariate f?



Checking convexity — a toolkit

« Fact: for multivariate, 2" order differentiable f, f is convex
its Hessian V4f(u) = 0 for all u

>=: positive semidefinite (psd) partial order (Loewner order)
*A>0s Ais psd

» Exercise: verify that
F(w) :Z{yzw r; — log (1+ew i )}
IS concave in w by cheéking Its Hesslan
* |s there an easier way?



Checking convexity — a toolkit

e Linear functions are both convex and concave
* Norms are convex

* |If f, g be convex, then
« max{f(x), g(x)} is convex
 f(X) + g(x) Is convex
- if g is nondecreasing, then h(x) := g(f(x)) is convex =>e.g., h(w) = ||w]|?

* fis concave, g Is convex and nonincreasing, then h(x) := g(f(x)) is convex.

1
e.g., h(x) = et >0
« Convexity Is invariant under maps:
If f is convex, then f( ) is also convex where A € R™*%,p € R"

F(w):Z{yzw T; — log(1+ew x)}

()



sklearn.linear_model.LOgisticRegression

class sklearn.linear_model.LogisticRegression(penalty="[2", *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1,
class_weight=None, random_state=None, solver="lbfgs', max_iter=100, multi_class="auto', verbose=0, warm_start=False,
n_jobs=None, [1_ratio=None) 1 [source]

penalty : {’IT’, l2°, ‘elasticnet’, ‘none’}, default="12'
Specify the norm of the penalty: Can also incorporate regularization
in logistic regression

e ‘none':no penalty is added;
e '12':add a L2 penalty term and it is the default choice;

e '11':add a L1 penalty term;
e ‘'elasticnet’: both L1 and L2 penalty terms are added.

tol : float, default=1e-4
Tolerance for stopping criteria.

C: float, default=1.0
Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values
specify stronger reqularization.



Scikit-Learn Logistic Regression

_ = log regression.fit (pd.DataFrame(x), V)

Yy pred = log regression.predict proba(pd.DataFrame (X))
log v pred 1 = [item[l] for item in y pred]

fig = plt.figure(figsize=(10,5))
Xlabel = 'Age'

ylabel = 'Purchased’

plt.xlabel (xlabel)

plt.ylabel (ylabel)

Purchased

plt.grid(color='k', linestyle=':', linewidth=1)
plt.plot(x, vy, '"Xb') : i ; i : i . ;
plt . pl,:.t (Xr ]_Og y_pred 1 , T :|. ltll.[] 12I.5 ISI.E' l?I.S 2‘0I 0 22;.5 25I.[} 2?'I.5

= plt.plot(x, line point 5,'-g"')

Function predict proba (X) returns prediction of class
assignment probabilities (Just a number In binary case)

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28
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Using Logistic Regression

The role of Logistic Regression differs in ML and Data Science,

* |In Machine Learning we use Logistic Regression for building predictive
classification models

 |n Data Science we use it for understanding & interpreting how
features relate to data classes / categories

Example South African Heart Disease (Hastie et al. 2001)

Data result from Coronary Risk-Factor Study in 3 rural areas of South
Africa. Data are from white men 15-64yrs and response is
presence/absence of myocardial infraction (Ml). How predictive are
each of the features?



0

0.8

0

sbp
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tobacco

00 04

famhist
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Looking at Data
Each scatterplot shows
pair of risk factors. Cases
with Ml (red) and without

(cyan)
Features
» Systolic blood pressure
» Tobacco use
« Low density lipoprotein (Idl)
» Family history (discrete)
* Obesity
» Alcohol use
 Age

[Source: Hastie et al. (2001)]



Example: African Heart Disease

Coefhcient Std. Error Z Score

(Taverceps) _ . _ 4130 _ _ 0964 __ 4285 FInding Systolic blood
. sbp 0.006 0.006 1.023 - pressure (sbp) is not a
- toBacte — 0.080" =~ 0-026 - — " 3.034 ' significant predictor
1d1 0.185 0.057 3.219
T ii:i;‘ T 'gg%? T %ﬁ;—;' - _‘fié‘f " Obesity Is not significant and
b=y == 0001 = =" Toor " - - o136 ' hegatively correlated with heart
age 0.043 0.010 4.184 disease in the model

Remember All correlations / significance of features are based
on presence of other features. We must always consider that
features are strongly correlated.



Example: African Heart Disease

Doing some feature selection
we find a model with 4

Coefficient Std. Error Z score _
(Intercept) —4.204 0498 845 features: tobacco, Idl, family
tobacco 0.081 0.026 3.16 history, and age
1d1 0.168 0.054 3.09 _ o
famhist 0.924 0.223 4.14 How to interpret coefficients?
age 0.044 0.010 4.52 (e_g_ tobacco = 0_081)
| . . . ply=1|z) r
* Tobacco Is measured In total lifetime usage (in kg) In py=0lz) we T

* Thus, increase of 1kg of lifetime tobacco yields
exp(0.081) = 1.084
Or 8.4% increase In odds of coronary heart disease

* 95% Cl is 3% to 14% since exp(0.081

-2 % 0.026) = (1.03,1.14)



» Linear Models for Regression
»Least Squares Estimation
»Reqgularized Least Squares

»Linear Models for Classification
»Logistic Regression
»Support Vector Machine



Linear Decision Boundary

Any boundary that separates classes is equivalently good on training data
Are they equally good on unseen test data?

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]
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Classifier Margin

The margin measures minimum
distance between each class and the
decision boundary

Observation Decision boundaries with
larger margins are more likely to
generalize to unseen data

X
)

ldea Learn the classifier with the largest
margin that still separates the data...

...we call this a max-margin classifier

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]
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Max-Margin Classifier

Recall that the linear model is given by y>0 ol
y=10 f
fle)=wlz+b vt N
Let classes be {—1, 1} so classification
rule is,
1 if f(x) <0
— 1 T <
h(x) = 4 _
1 if f(z) =0
Decision boundary is now at f(x) = 0 and
distance of x to it is: Known as the distance from a
f(z) point to a plane equation:
m wiki/Distance from a point to_a plane

Where the norm of the weights is |w|| = VwTw = />, w?


https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_plane

Max-Margin Classifier

For training data {(x,,, y,,)}, we would like to choose (w, b) to ensure two
properties:

(1) all points are correctly classified:
Vn (WTxn +b)>0,n=1,..N
lwTx,+b|

Iw]l

(2) the margins of all points ,n=1,..N are as large as possible

This motivates the following optimization problem (O1): =~

. . |wTx,+b]
maximize | min
w.b n Iwl

subjectto:y, W'x, +b) >0,n=1,..N o X



Constrained optimization

min f(w)
w
s.t. g;(w) <0,Vi=1,...,k (inequality constraints)
hj(w) =0,vj =1,...,¢£ (equality constraints)

* When f Is convex and
the constraint set is a convex set

=> convex optimization problem . ... S
=> efficient solvers abound =3
*|s (O1) a convex optimization problem?

* If not, can we convert it to one?




Max-Margin Classifier (cont'd)

Minimum margin
lw T x,+D]

(01) maximize (mln
w.b n Iwll

Subject to: y, (WTxn + b) >0,n=1,..N Perfect classification

|WTxn+b| yn (WTxn+b) for all n
lw]| lw]|

* Note: under perfect classification,

* Therefore, (O1) Is equivalent to (02)'

W' Xn,+Db
max1mlze (mlny"( It ))

n lwl|
sub]ectto v, W'x, +b)>0,n=1,..N




Max-Margin Classifier

« (02).

maximize
_ w.b
subject to: y,, (w

min
n Iwl|

g . Yn (wan+b))
X, +b)>0,n=

1,..N

* Infinitely many solutions — if (w, b) is optimal, then (2w, 2b) is also
optimal (for example)

» Break ties: add the constraint that min y,, (w'x,, + b) = 1
n

* To solve (0O2), it suffices to solve (O3):
.. ( . Yn (wan+b))
maximize | min
w.b n lwl|
subjectto: miny, (W'x,, +b) =1
n




SVM derivation (3)

. yilwTx; + b)
max min]*_,
(03) w,b Iwl|
s.t. miny;(w'x; + b) =1
l

« Summary: the constraint encodes (1) correct classification (2) there are
no two solutions that represent the same hyperplane!

* Note: If (w, b) is a solution, then the minimum margin is L

Iw]l
1 1 1
max —- max —- max —-
wb [|w] = wb ||w]| =) wb [|w]
s.t. min yiwTx; +b) =1 s.t. min yilwTx; + b) = 1 s.t. yi(wTx; +b) =1,Vi
(turns out to be equivalent..)
: : : . : min ||w]|?
Final formulation in the linearly separable setting: w,b

s.t. y;(wTx; +b) > 1,Vi

106



Support Vector Machine (Primal)

To learn the classifier, we solve the following constrained
optimization problem...

: 1
. ¢ .® . .« . . ) o
<y ’ minimize — H”LUH This is known as the
. . 2 primal optimization
— e subject to
@@ yn(whz, +b) >1 forn=1,...,N

e "y e This is a convex optimization problem that can be
e solved efficiently

I Why? check back “constrained optimization” slide

« Data are D-dimensional vectors

« Margins determined by nearest data points called support vectors

« We call this a support vector machine (SVM)




SVM In the nonseparable setting: Soft-margin

m1n||w||2
s.t. yl(w xl+b)>1 Vi

« What if data are not linearly separable?
* Introduce 'slack’ variables

g??lo}llwllz + Cz ¢& Il Cis a hyper-parameter

s.t. yi(wTx; +b) > 1—€l,Vl

« Again, a convex optimization problem
* Fix any w, b, what is the optimal £?
fi =0if yi(WTxl- + b) > 1, and fi =1- yi(WT.X'i + b) otherwise -

mln wll* +C Z(l —yi(w'x; + b)) < Regularized hinge loss minimization

i=1 108



SVM in Scikit-Learn

SVM with linear decision boundaries,

sklearn.svm.LinearSVC

Sepal width

Call options include...

Sepal length
penalty : {'l1°, ’12°}, default="12" P d
Specifies the norm used in the penalization. The ’12' penalty is the standard used in SVC. The 'I1" leads to
coef_ vectors that are sparse.

dual : bool, default=True

Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when
n_samples > n_features.

C : float, default=1.0

Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly
positive.

Other options for controlling optimizer (e.g. convergence tolerance ‘tol’)


https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC

Learning linear models: unified view

* All model training in this lecture can be
viewed as reqularized loss minimization

w = argmin, pa N £(W; x5, y;) + A R(w)

« ¢: loss function — logistic / hinge / square / .. N
* R: reqgularizer—L1/L2/Lqg/...

» Can oftentimes be optimized by (stochastic) gradient descent &
friends very efficiently

* E.g. see Allen-Zhu's ICML 2017 tutorial



https://www.youtube.com/watch?v=jPjhiaeYruQ

Next lecture

 Nonlinear models: kernel methods

» Assigned reading: CIML Chap. 11






Next lecture

 Nonlinear models: kernel methods

» Assigned reading: CIML Chap. 11



Linear Decision Boundary

Least squares regression yields decision boundary based on least
squares solution...

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]
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Multivariate Quadratic Form

Quadratic form for vectors is

% Vil given by inner product,
\ l‘ 25
N | -0 - p
b oW — ) (y—p
D ‘l 5 20-2
e A . For iid data MLE of Gaussian
B mean is once-again least
toe squares,
 Strongly convex N
» Differentiable min > (v — 1)
1=1

* Unique optimizer at zero gradient



Notation

Substitute multi-dimensional linear regression...

p(y | p) =Ny | po?)

v

p(y | w,z) =N(y | v z,0°1)

...brings us back to the least squares solution



Pseudoinverse
wOLS _ (XTX)_ley
The Moore-Penrose pseudoinverse is denoted,
XT=X'xX)"1x?

 Generalization of the standard matrix inverse
e Exists even for non-invertible XX

* Directly computable in most libraries
*In Numpy itis: linalg.pinv



Notes on L2 Regularization

* Feature weights are “shrunk” towards zero (and each other) —
statisticians often call this a “shrinkage” method

* Typically do not penalize bias (y-intercept, wy) parameter,

mmg —wlx; — wo) +)\E w3
d=1

* Penalizing w, would make— adding a constant c to Y would not add a
constant to solution weights

 Can fit bias in a two-step procedure, by centering features z;; — x
then bias estimate Is wg = ¥

« Solutions are not invariant to scaling, so typically we standardize (e.qg.
Z-score) features before fitting model ( Sklearn StandardScaler)



Moving to higher dimensions...

In higher dimensions Line - Plane

Multiple ways to define a plane, we

will use:
T _
/n (p—p1) =0
Normal Vector In-Plane Vector
(controls orientation) (handles offset)

Source: http://www.songho.ca/math/plane/plane.htmi



http://www.songho.ca/math/plane/plane.html

Classification as Regression

Purchased

10.0 125 150 175 200 25 25.0
Age

 This is a discriminant function, since it discriminates between classes

* |tis a linear function and so is a linear discriminant

« Green line is the decision boundary (also linear)

215

Recall our linear regression can be
used for classification via the rule,

0 ifwlz<0.5

Class = T
1 itw'xz>=0.5

Generalizes to
higher-dimensional
features

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28



https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28

Classification as Regression

Idea Fit a least-square linear regressor
w to the data (red). Classify points
based on whether they are above or
below the midpoint (green).

Purchased

(0 ifwlz <05
1 ifwlz>05

N2 SIS SUUOROTUURIOS SIGUUNOERORS SAUUUIUNSOUUTON SURURRUUUUUUEr > SANNIE OOV U0 0 SO VSO Filite. U VN VIO SO

10.0 12.5 15.0 175 20.0 225 50 275 \.
Age

* This Is a discriminant function, since it discriminates between classes
e Itis a linear function and so is a linear discriminant
« We can call this approach least squares classification

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28
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Least squares classification: rationale

Recall: Bayes optimal classifier

f*(x) =

\

Recall the linear regression model,

So linear regression models the ex

wiz~Ely |z

(

0 ifwlx<0.5
1 ifwlxz>0.5

\

(0 ifP(y=1]|z) <05
1 ifPly=1|z)>0.5

p(y | a?) — N(wa702)

nected value,

=Py=1])



Linear Probability Models

Binary Classification Linear model approximates
probability of class assignment,

wTa ~ p(y = /)

20
Age

Multiclass Classification Multiple decision boundaries,
each approximated by the class-specific linear model,

fk(a:) = Wi.x Where W..is k" row

Approximates probability of class assignment,

Fay

fr(z) = ply =k | )




Notation

Likelihood of linear basic regression model...

p(y | w,z) =Ny | wz,0”)

v

p(y | p) =Ny | p o)

...we will just look at learning mean parameter for now



Multivariate Gaussian Distribution

We have only seen scalar (1-dimensional) X, but MLE is still least
sguares for higher-dimensional X...

Let X € R? with mean i € R¢ and positive semidefinite covariance
matrix Y € R4*9 then the PDF is,

_ 1 _
N(z| 1, %) = 2787 exp —(z — )" 87 (z — )

Again, the logarithm is a negative quadratic form,
1
log |27 %712 — (2 — 1) 'S (@ — )

\ J \ J
Y Y

Constant (in mean) Quadratic Function of mean




What's the rational?

For discrete values we have that,

Elyx | 2] = fi(x) = p(Class = k | z)

Can easily verify that they sum to 1,

Zf:l fe(z) =1

But they are not guaranteed to be positive!




Logistic Regression: Decision Boundary

Bayes optimal prediction:
predict 1Lifp(y=1]x)>0.5

B A B A ——rr it i ii i

p(C=1]x)
p(C=0]x)

R - D B O B L

If this ratio Is greater than 1.0 then
classify as C=1, otherwise C=0

10.0 125 15.0 17.5 200 225 250 275
Age

In practice, we use the (natural) logarithm of the posterior odds ratio,

log 22— —w' This Is a linear decision boundary
— X

Logistic regression is a linear classifier



lteratively Reweighted Least Squares

« Given some estimate of the weights w°!9 update by solving,

W = (XTWX) !XT Wz

Y Y

Design Matrix NxN Diagonal
(NxD) Weight matrix
Where z Is the gradient direction, P(y=1/) for each

training point

z = Xuw'd + Wy — p‘)/

« Essentially solving a reweighted version of least squares,

OLS T —1~T Each iteration changes W
w Bl (X X) X Yy and p so need to resolve



Choice of Optimizer

\ — SGD

- Momentum

—— NAG
Adagrad
Adadelta

Rmsprop

Irrerrrr

Since Logistic regression
requires an optimizer, there are
more parameters to consider

The choice of optimizer and
parameters can affect time to
fit model (especially if there are
many features)

https://www.datasciencecentral.com/profiles/blogs/an-overview-of-gradient-descent-optimization-algorithms



https://www.datasciencecentral.com/profiles/blogs/an-overview-of-gradient-descent-optimization-algorithms

Example: African Heart Disease

Coefthicient Std. Error Z Score

(Intercept) —1.130 0064 4085  Fitlogistic regression to the

sbp 0.006 0.006 1.023  data using MLE estimate via

tobacco 0.080 0.026 3.034 iterative reweighted least
1d1 0.185 0.057 3.219 squares

famhist 0.939 0.225 4.178

obesity -0.035 0.020 —1.187 Standard error Is estimated

alcohol 0.001 0.004 0.136 standard deviation of the
age 0.043 0.010 4.184 learned coefficients

Recall, Z-score of weights is a random variable from standard Normal,
Wy ~ SE(’wd) ~ N(O, 1)

Thus anything with Z-score > 2 iIs significant at 5% confidence level



=10 4

Support Vector Machine (Dual)

All other points are outside the margin
and constraints are loose:

yn (W d(zy,) +b) > 1

, Support vectors are tight to the margin,

and satisfy constraints with equality:

yn(wTCb(ZUn) +b) =1

SVM Dual Problem Find the support vectors (set of constraints that
hold with equality) that define the largest margin



Max-Margin Classifier
For training data {(z,,, vy, )} we only care about the margin for correctly-
classified points where,
The margin of correctly-classified points is then given by,

ynY(Zn) _ Yn(w” zn +b)

Maximize margin over correctly-classified data points,

arg max {min
wh 00 ol



Nonlinear Max-Margin Classifier

Just as In the linear models we can
Introduce basis transformations,

y(x) = w' ¢(x) + b

Max-margin learning is similar,

arg max {min
wb [ n lw]

Decision boundary is linear in the transformed data, but
nonlinear in the original data space

[ Source: Bishop, C. PRML]



Facts on vectors

i
~_~ to the hyperplane wTx = 0

(Lem 1) a vector x has distance

Iwll

How about with bias? w'x +b =0
Let us be explicit on the bias: f(x;w,b) = w'x + b

recall: w is orthogonal to the hyperplane
w'x+b =0
« why? (left as exercise)

134



Facts on vectors

T,
* (Lem 2) x has distance w ”W” +b| to the hyperplane w'x+b=0
y >0 ;1.*9
y =10

y <0

claiml : x can be writtenas x = x, + rn where x, iIs the

projection of x onto the hyperplane.

claim2 : then, |r| is the distance between x and the hyperplane

T

Solving forr: wTx+b=wTx, +r— Tl T+ b =r|w].
L b|
this implies || = _x*
plies || ==,

Figure from Pattern Recognition and Machine Learning, Bishop



Nonlinear Max-Margin Classifier

Data Space

Basis Space

10

Decision boundary is linear in the transformed data, but
nonlinear in the original data space




Max-Margin Classifier

Learning objective is hard to solve in this form...

arg max {min Yn (W' () + D) }

T o]

But we can scale parameters w — sw and b — xb without changing
margin...so we can set the nearest point to the margin so that,

yn(wTCb(xn) T b) =1
And for all other points not near the margin,
yn(wTCb(xn) +b) > 1

Now we just have to satisfy these constraints...



SVM derivation (2)

* |[t's actually a matter of removing ‘duplicates’; 3 many (w,b)’s that actually represent
the same hyperplane.

y;(wTx; + b)

(w,b) = maxminl,
« Quick solution w,b lwl|

» For any solution-(# Bjelgts theesthg glesestiaithe hyperplane wx; + b=0

- Imagine rescaling (w,b) so that |wTx;- + b| = 1

« We can always do that, but can we find a formulation that automatically finds that
modified solution?
« add the constraint



SVM derivation (1)

|lwTx;+b|

« Margin of over all training points: y'(w, b) = min
l

« Choose (w, b) with the maximum margin? .. wait, we also want it to be a perfect classifier

* redefine it
( b) Vi (WTxi + b) * © g
y(w, b) = mi
l lwl| g K
« Choose w with the maximum margin (and perfect classification) | R C ®
e, ¢
S - YilwTx; +b) - ®,
(W,b) = max min;_, o
w,b lwll >
* One more issue: still, infinitely many solutions..!




Max-Margin Classifier (cont'd)

Minimum margin

_ . |wTxn+b|
maximize | Imin
w.b n Iwl

SllbjeCt to: y, (WTXn + b) >0, n=1,...N Pperfectclassification

» Note: under perfect classification, =

* Turns out: (O1) is equivalent to (O2):.
( . Yn (WTxn+b))

min
n Iw]l

maximize
W.b



Max-Margin Classifier

Maximize the
minimum margin

A
' N\
{ : yn(wT-Tn + b) }
arg max 4 min
T Tl
G J

Minimum margin over
all training data

Find the parameters (w,b) that maximize the smallest
margin over all the training data

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]



http://www-bcf.usc.edu/~gareth/ISL/

Max-Margin Classifier

* (02):
.
maximize (min Yn (W x"+b))
w.b n wl]l
* Infinitely many solutions — if (w, b) is optimal, then (2w, 2b) is
also optimal (for example)

» Break ties: add the constraint that min y,, (W'x,, + b) = 1
n
* To solve (02), it suffices to solve (O3):

T

.. . wW'Xx,+b

maximize (mlny n (W' xn ))
w.b n lw||

subjectto: miny, (w'x,, +b) =1
n




SVM derivation (3)

. yilwTx; + b)
max min]*_,
(03) w,b lwl|
s.t. miny;(w'x; + b) =1
l

« Summary: the constraint encodes (1) correct classification (2) there are
no two solutions that represent the same hyperplane!

» Note: If (w,b) is a solution, then the margin is —

Iwl|
1 1 1
max —— max —— max ——
wb |[w]| wb |[w]| wb |[w]|
s.t. miny;(w'x; + b) =1 s.t. miny;(w'x; + b) > 1 s.t. yiwTx; +b) > 1,Vi
l l

(turns out to be equivalent..)

- 2
Final formulation in the linearly separable setting: %}EHW”

(quadratic programming) s.t. y;(w'x; +b) =>1,Vi

143



Support Vector Machine (Primal)

To learn the classifier, we solve the following constrained
optimization problem...

' oty St minimize — HwH2 This is known as the
. . 2 primal optimization
— e subject to
e T yn(w' zn+b)>1  forn=1,...,N
T This I1s a convex (quadratic) optimization

problem that can be solved efficiently

« Data are D-dimensional vectors
« Margins determined by nearest data points called support vectors
* We call this a support vector machine (SVM)



Univariate Gaussian (Normal) Distribution

Gaussian (a.k.a. Normal) distribution with
mean (location) 1 and variance (scale) o2
parameters,

1 1
N(z | p,0%) = exp —5 (z — p1)* /o
272 2

The logarithm of the PDF is just a negative

guadratic,
1 1

log N'(z | p,0%) = —5 log 21 —logo — —=(z — p)?

9 2

g
\ J \

J

Y

Y

PDF

10™

' Log- PDF

-5 -4 -3 -2 -1 0 1 2 3 4 5

Constant in mean Quadratic Function of mean
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