04 Linear Classification; Perceptron

Chicheng Zhang

Department of Computer Science

A THE UNIVERSITY
. OF ARIZONA

Linear classifiers

. 4

* Example application: spam filtering using bag-of-words feature representation w

g -

I S S S P

Email 1
Email 2 0 0 1 1 -1
e 1f0.124 - Xfree T 2.5 - Xoffer T —2.31- Xlecture = 2.12 then

* return’ spam

e else
* return “nonspam”

Linear models: biological motivation M

* Firing of a neuron depends on:
 Whether the incoming neurons are firing
* The strength of the connections

e The McCulloch-Pitts neural model:

a neuron Implements a linear threshold function
hy (x) = sign({w, x))

Math review: inner product between vectors

* Given vectors u, v € R%, their inner product:

(u,v) = Ny u; - v

* Geometric interpretation:
(u,v) = [[ullz - [|v]|2 - cos(6(u,v))

where 8(u,v) € [0,] is the angle between them

= (signed) length of v’s projection onto u o]

* Observe that cos(0(u,v)) € [—1, +1]

= Cauchy-Schwarz inequality: [{u, v)| < ||u]|2||v]],

Linear classifiers: geometric view

Homogeneous linear classifier h,,(x) = sign({w, x))

Prediction: Projection + threshold
Decision boundary: line in 2d, plane in 3d, hyperplane in general

Non-homogeneous linear classifier h,, , (x) = sign({w, x) + b)

which decision boundary corresponds to offset b > 0? Blue or yellow?

* Sometimes convenient to view non-homogeneous. as homogeneous via feature augmentation
hy,p (x) = sign({(w, b), (x,1)))

R

~ ~

w X

Training linear classifiers: The Perceptron algorithm (Rosenblatt, 1958)

* For training homogeneous linear classifiers

.
vl e

Initialize w; < (0, ..., 0) T
inboX Spam
Fort = 1,2,..,m -mm_
d Emaill 1 0
Process example x; € R = - ” . .
Calculate classification score a; = w; - x; ha
By lh-ﬂ -
a. . W ,.-*'f
Update: if y,a, > 0: wyyq & wy; & x5 ; -7
otherwise: Wy, 1 < W; + Ve Xt. R
. - ~
. . . v AN
* Properties: (1) Online (2) Error-driven updates | R

Perceptron for nonhomogeneous linear classifiers

* |dea: reduce to training homogeneous linear classifiers
hyp(x) = sign({(w, b), (x,1))) = sign({Ww, X))

Multiple passes over the data

Algorithm 5 PERCEPTRONTRAIN(D, Maxlter)

v wy <o, forall d=1...D // initialize weights
xb+o0 // initialize bias
5 foriter = 1 ... Maxlter do

for all (x,y) € D do

¥
5 a < ZEZI wyx;+b // compute activation for this example
6 if ya < o then

7 Wy «— wy +yxg, forall d=1...D // update weights
8 b« b+y // update bias
9 end if

o end for

x: end for

= return wgy, wy, ..., wp, b

Algorithm 6 PERCEPTRONTEST(wWwg, w1, ..., Wp, b, X)

va YD wy g+ b // compute activation for the test example
2 return siGgn(a)

passes

activation = classification score

Perceptron: practical issues

* H : Maxlter = # =# h
yperparameter: Maxlter = #passes = #epochs o dlete

enE Sk

% g9 e g
* Data shuffling: » b (pot Qeiwrb)

* A non-random training data sequence +++ ++ -— ... ---
* Drawback: only update using the first few examples in each segment

ey Sk

* More efficient: permute the data sequence for every pass

% ¢qoc\ng

Perce ptron: convergence

* Does the Perceptron’s iterate w converge?

* Important concept: linear separability

* A dataset S is linearly separable if there exists

oroperties

Foriter=1,2,....
For (x,y) € S:
Calculate prediction y = sign(w - x)
ify+ywew+yx.

w such that forall (x,y) € S,y (w,x) >0

Figure 4.10: separable data

Observations:

+ ([]
([]

Figure 4.11: inseparable data

nonseparable = does not converge
Separable = converge?

If so, how long does it take to
converge?

Linear classification margins

e Measures easiness of a dataset for linear classification

e Larger margin = easier dataset = faster convergence

* Margin of a linear classifier w on §:

min _y(w, x), w separates S
margin(S,w) = {(x¥)ES
—00, otherwise
* “Wiggle room” of won §
e Margin of dataset S: margin(§) = max margin(S,w)
wi|[wl[2=1

* See book for definition of margins for nonhomogeneous linear classifiers

10

The Perceptron convergence theorem

Theorem (Perceptron Convergence Theorem, Novikoff 1962): Suppose the Perceptron
algorithm is run on a dataset S; Assume:

* margin(S) =y, i.e. there exists w*, ||w*||, = 1, y(w*,x) = y forall (x,y) €S
* Forall(x,y) €S, |x|l, <1

then the Perceptron algorithm makes at most 1/y? updates throughout the process.

* Can also be phrased as an online learning mistake bound guarantee

Proof of Perceptron Convergence Theorem

« Denote w() the value of w after the k-th update; w(® = (0, ..., 0)

« Idea: track the progression of (w®) w*) and ”W(k)”z

e At the k-th update:
(w®,w*) = (wk=D 4 yx, w*) = (wk=D, w*) +y
2 B 2
[w S = [w = + x|

= W(k_l)

+2(w), yx) + (1213

< [lw&ED|” + 1

N DN N DN

Proof of Perceptron Convergence Theorem

* Therefore, if a total of k mistakes are made, then:

(W w*) > ky,and |[w®| < Vk

A

lw @]

(W(R),W*)

#updates

Proof of Perceptron Convergence Theorem

* Let M = #mistakes made up to time step n

(Wny1, W) =My, and [[lwy, 4] < VM

* Meanwhile, by Cauchy-Schwarz,

(Wn+1, w*) < [lwypqll - w*|| = llwpeqll

« Thisimpliesthat M y < VM = M < 1/y?

e This holds for all n, which concludes the proof

Practical versions: voting Perceptron

= . -

o . K * +
« Naive Perceptron: return the last iterate w)
* Drawback: N 0’*“

* say making one pass, last example is an outlier

e Last update may ruin a previously trained good model <

€ {-1,+1}

* A more robust output classifier: Figure 4.11: inseparable data

T
h(x) = sign th(x) = sign
=1

}

Linear classifier at iteration t Number of times t when hy = h &

Kk
C(h,,u0 (x)

uM::

Has good predictive performance, but computationally expensive to maintain

15

Practical versions: averaged Perceptron

h(x) = sign((W,x)), where W = %, w, =

* This is equivalent to sign({3X_ c® w® x))

e Efficient implementation

(avoid extensive bookkeeping when no update)

* Exercise: show that the final output is w

)Zlk(=0 c®) w) is the averaged predictor

Algorithm 7 AVERAGEDPERCEPTRONTRAIN(D, MaxlIter)

b+ o
B o

//'initialize weights and bias
// initialize cached weights and bias
// initialize example counter to one

v w+ {(0,0,...0) ,
= u 4+ (0,0,...0) ,
3 €4 1

4 foriter =1 ... MaxlIter do
= forall (x,y) € Ddo

6 if y(w-x+b) <othen

7 w — w X // update weights
8 b« b+ y — z() // update bias
9 U< u+ycx // update cached weights
10: B+—p+yc // update cached bias
1 end if

12: C—c+1 // increment counter regardless of update
3 end for

4 end for

s return w - % ub - % // return averaged weights and bias

kd\
(k) & K
‘ (k)
— c Z 28 Z c®
k=0

k=0 <k

16

Perceptron: limitations

o V4

not

The ‘XOR’ problem: data linearly nonseparable +

i ‘~ “excellent”

E.g. sentiment analysis

Possible fix: introduce nonlinear feature maps

x = (x1,x3) = p(x) = (x1, x5, X125, xlz, xzz), e.g. containing “mega-feature” x,, * Xexcellent

Later in the course: kernel methods (high/infinite dim ¢); neural networks (learn ¢ from data)

17

Next lecture (2/8)

* Practical issues: feature selection; feature transformation; model performance evaluation

* Assigned reading: CIML Sections 5.1-5.6

18

	Slide 1: CSC 480/580 Principles of Machine Learning 04 Linear Classification; Perceptron
	Slide 2: Linear classifiers
	Slide 3: Linear models: biological motivation
	Slide 4: Math review: inner product between vectors
	Slide 5: Linear classifiers: geometric view
	Slide 6: Training linear classifiers: The Perceptron algorithm (Rosenblatt, 1958)
	Slide 7: Perceptron for nonhomogeneous linear classifiers
	Slide 8: Perceptron: practical issues
	Slide 9: Perceptron: convergence properties
	Slide 10: Linear classification margins
	Slide 11: The Perceptron convergence theorem
	Slide 12: Proof of Perceptron Convergence Theorem
	Slide 13: Proof of Perceptron Convergence Theorem
	Slide 14: Proof of Perceptron Convergence Theorem
	Slide 15: Practical versions: voting Perceptron
	Slide 16: Practical versions: averaged Perceptron
	Slide 17: Perceptron: limitations
	Slide 18: Next lecture (2/8)

