CSC 480/580 Principles of Machine Learning

03 Geometry & Nearest Neighbors

Chicheng Zhang

Department of Computer Science

Outline

- Nearest neighbor methods for supervised learning
- Clustering and the *k*-means algorithm

Nearest neighbors for supervised learning

Motivation

Example Given student course survey data, predict whether Alice likes Algorithms course

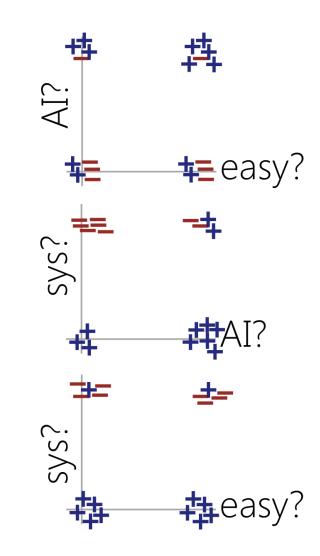
Idea Find a student ``similar'' to Alice & has taken Algorithm course before, say Jeremy

- If Jeremy likes Algorithms, then Alice is also likely to have the same preference.
- Or even better, find *several* similar students

- Prediction = mapping inputs to outputs
- Inputs = *features* that can be viewed as points in some space (possibly high-dimensional)
- "Similarity" = "distance" in feature space
- Suggests a geometric view of data

Example: Course Recommendation

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	у	у	n	у	n
+2	у	у	n	У	n
+2	n	у	n	n	n
+2	n	n	n	У	n
+2	n	у	У	n	У
+1	у	у	n	n	n
+1	у	у	n	У	n
+1	n	у	n	у	n
0	n	n	n	n	у
0	у	n	n	У	у
0	n	у	n	у	n
0	у	у	у	У	у
-1	у	у	У	n	у
-1	n	n	У	У	n
-1	n	n	У	n	У
-1	у	n	У	n	У
-2	n	n	У	У	n
-2	n	у	У	n	У
-2	у	n	У	n	n
-2	у	n	у	n	у
\mathbf{Y}					
Features					



ML begins by mapping data to feature vectors

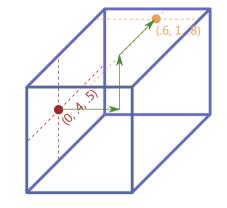
Represented as points in 5dimensional space for this example

That's too many dimensions to plot...so we look at 2D projections...

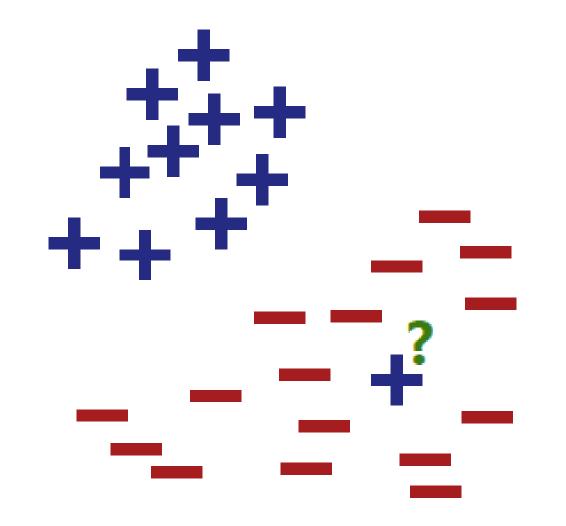
Measuring nearest neighbors

- Oftentimes convenient to work with feature $x \in \mathbb{R}^d$
- Distances in R^d:
 - (popular) Euclidean distance $d_2(x, x') = \sqrt{\sum_{f=1}^d (x(f) x'(f))^2}$
 - Manhattan distance $d_1(x, x') = \sum_{f=1}^d |x(f) x'(f)|$
 - If we shift a feature, would the distance change?
 - What about scaling a feature?
- How to extract features as <u>real values</u>?
 - Boolean features: {Y, N} -> {0,1}
 - Categorical features: {Red, Blue, Green, Black}
 - Convert to {1, 2, 3, 4}?
 - Better one-hot encoding: (1,0,0,0), .., (0,0,0,1) (IsRed?/isGreen?/isBlue?/IsBlack?)

notation x(f): x = (x(1), ..., x(d))



Nearest Neighbor Classification



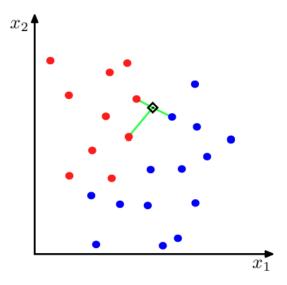
Query point ? Will be classified as + but should be -

Problem: predicting using 1 nearest neighbor's label can be sensitive to noisy data

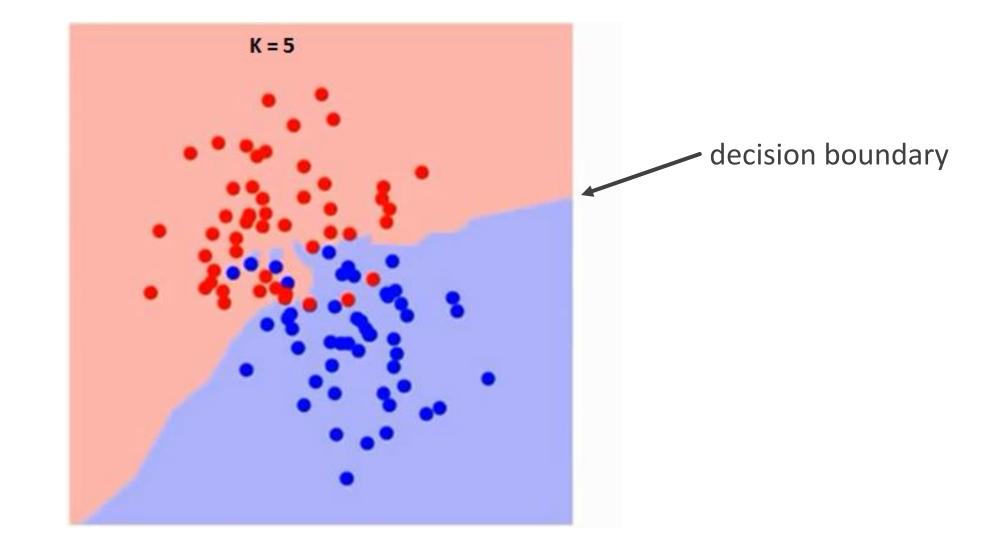
How to mitigate this?

k-nearest neighbors (k-NN): main concept

- Training set: $S = \{ (x_1, y_1), ..., (x_m, y_m) \}$
- **Inductive bias**: given test example *x*, its label should resemble the labels of **nearby points**
- Function
 - input: *x*
 - find the k nearest points to x from S; call their indices N(x)
 - output:
 - (classification) the majority vote of $\{y_i : i \in N(x)\}$
 - (regression) the average of $\{y_i : i \in N(x)\}$

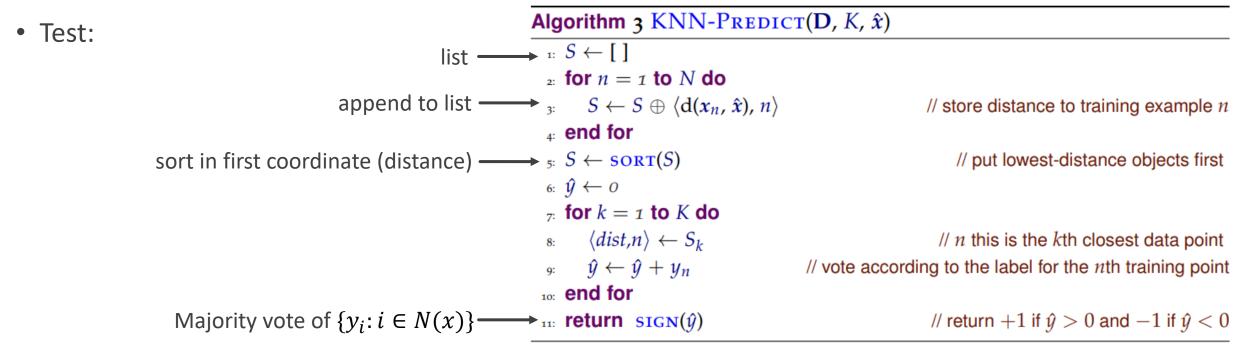


k-NN classification example



k-NN classification: pseudocode

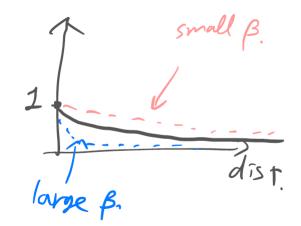
• Training is trivial: store the training set



- Time complexity (assuming distance calculation takes O(d) time)
 - $O(m d + m \log m + k) = O(m(d + \log m))$
- Faster nearest neighbor search: k-d trees, locality sensitive hashing

Variations

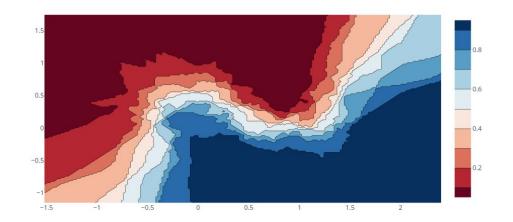
- Classification
 - Recall the majority vote rule: $\hat{y} = \underset{y \in \{1,...,C\}}{\operatorname{argmax}} \sum_{i \in N(x)} 1\{y_i = y\}$
 - Soft weighting nearest neighbors: $\hat{y} = \underset{y \in \{1,...,C\}}{\operatorname{argmax}} \sum_{i=1}^{m} w_i \ 1\{y_i = y\},\$ where $w_i \propto \exp(-\beta \ d(x, x_i))$, or $\propto \frac{1}{1 + d(x, x_i)^{\beta}}$



Class probability estimates

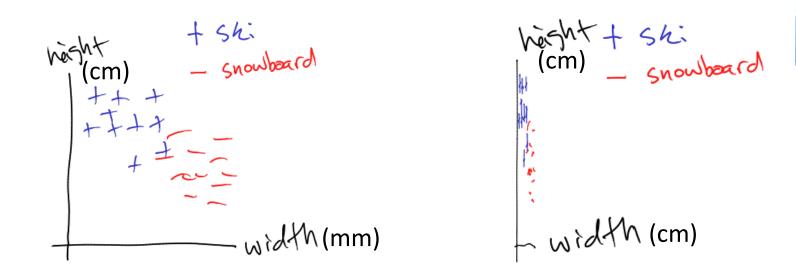
•
$$\hat{P}(Y = y \mid x) = \frac{1}{k} \sum_{i \in N(x)} 1\{y_i = y\}$$

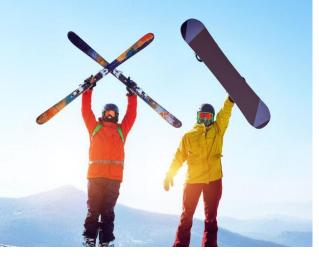
Useful for "classification with rejection"
/ label uncertainty quantification



Feature issue 1: scaling

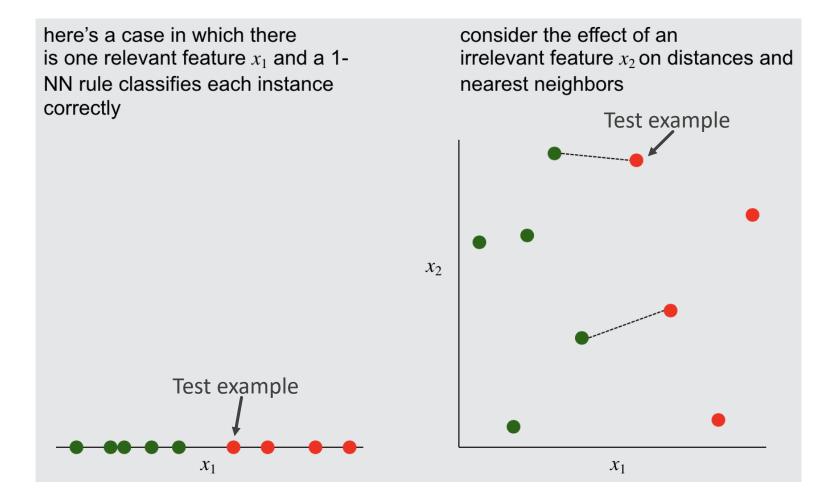
- Features having different scales can be problematic.
- Ex: ski vs. snowboard classification





• One solution: feature standardization (later in the course)

Feature issue 2: irrelevant features



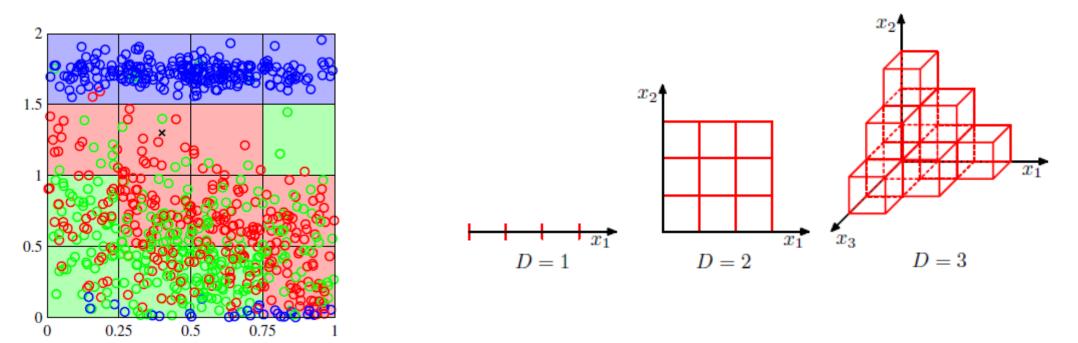
- Recall: how did we deal with irrelevant features in training decision trees?
- Solution: feature selection (later in the course)

Comparison (feature $x \in \mathbb{R}^d$)

Decision Tree k-NN Medium (example-based) High • Interpretability • Sensitivity to High Low irrelevant features $O(\# \text{nodes} \cdot d \cdot (m + m \log m))$ • training time 0 $\leq \tilde{O}(d m^2)$ (when no two points have the same feature) $O\big(m(d + \log m)\big)$ O(depth) • test time per example

Curse of Dimensionality

Divide space into regular intervals

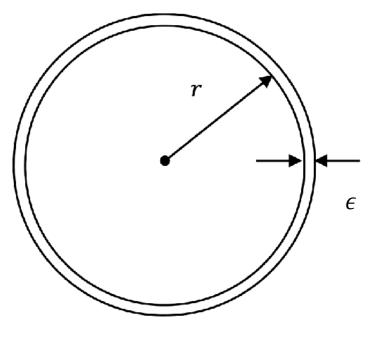


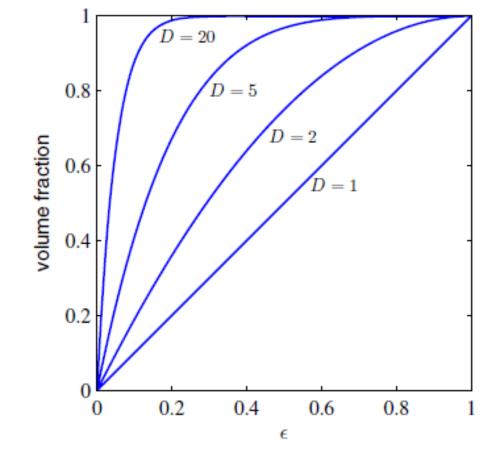
Number of required cells grows exponentially in dimension! Implications for high-dimensional data:

- Nearest neighbors may actually be far away
- *k*-NN classifier may not perform very well

Curse of Dimensionality – Distance Weirdness

- Consider *D*-dimensional hypersphere of radius *r*=1
- What is the fraction of volume within shell of width ϵ ?



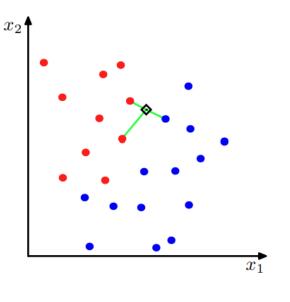


• Total volume of hypersphere concentrates onto shell at the surface!

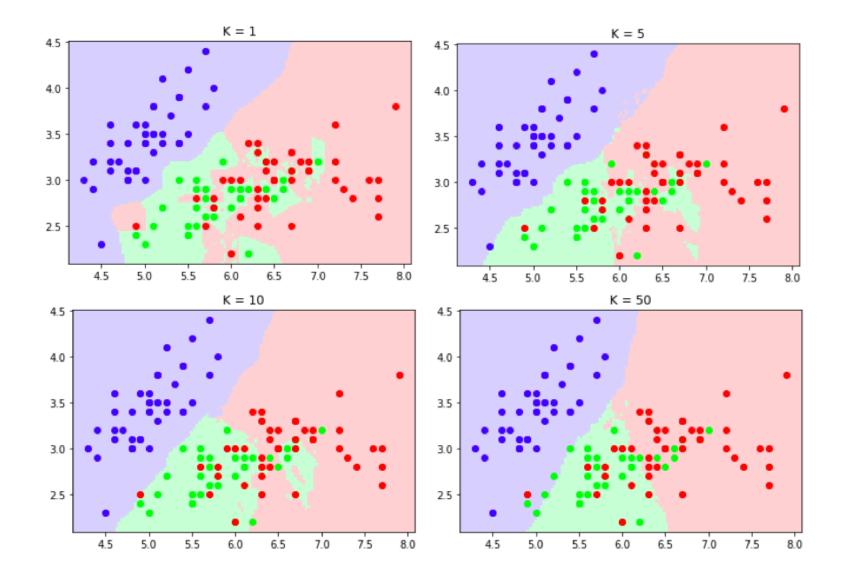
Intuition about lower dimensions doesn't extend to high dimensions

Hyperparameter tuning in k-NN

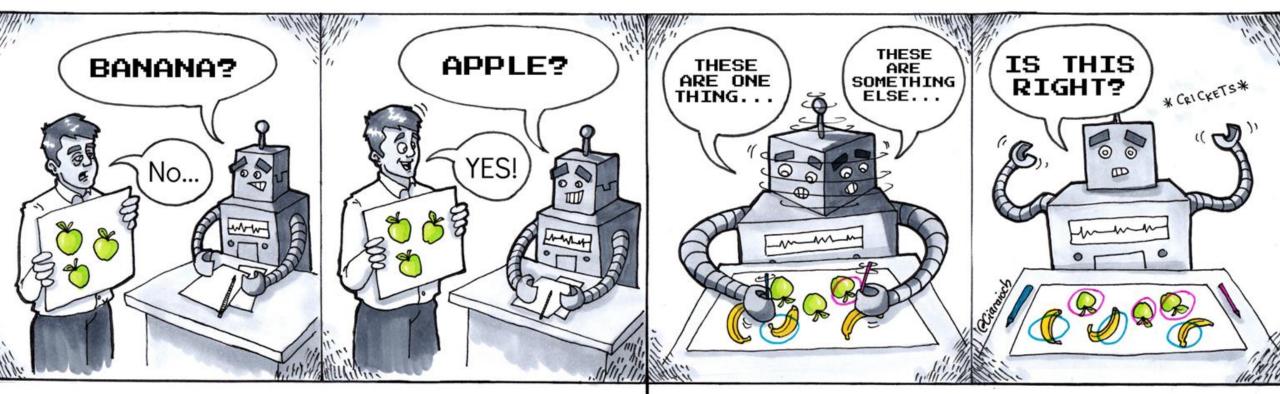
- Q: What are the hyperparameters for *k*-NN?
 - *k*, # of neighbors used for prediction
- k = 1:
 - Training error = 0, overfitting
- k = m:
 - Output a constant (majority class) prediction, underfitting
- From last lecture: can use hold-out validation set to perform hyperparameter tuning, i.e., choose k



Hyperparameter tuning in k-NN

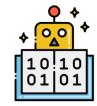


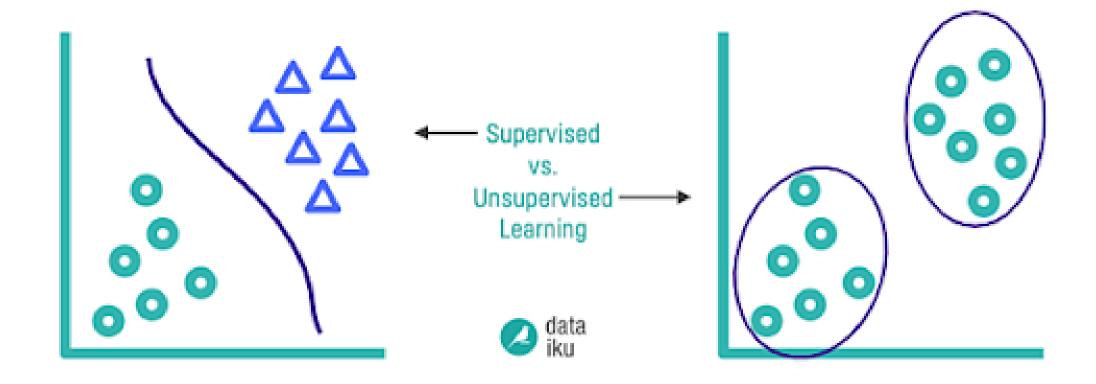
Clustering; k-means algorithm



Supervised Learning

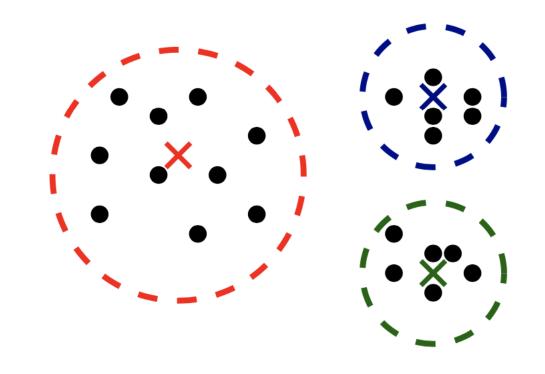
Unsupervised Learning





Clustering

- Input: k: the number of clusters (hyperparameter) dataset: $S = \{x_1, \dots, x_n\}$
- Output:
 - partition $\{G_i\}_{i=1}^k$ s.t. $S = \bigcup_i G_i$ (disjoint union).
 - often, we also obtain 'centroids'



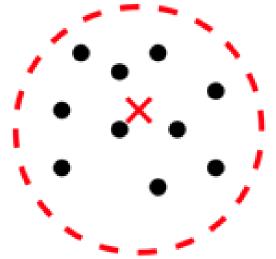
• Q: what would be a reasonable definition of centroids?

Centroid of a point set

• Intuition: a centroid c of point set $S = \{z_1, \dots, z_n\}$ should be close to all points in that set

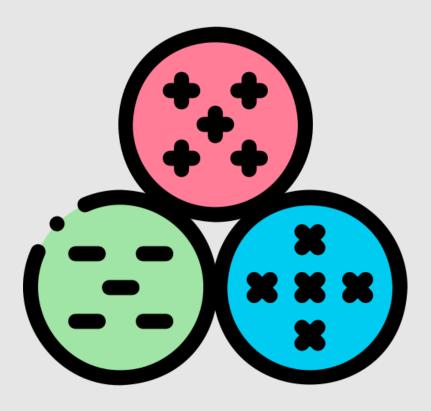
• A reasonable definition: *c* minimizes the sum of squared distances to points in *S*:

$$c = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \|z_1 - w\|^2 + \dots + \|z_n - w\|^2$$



- When $d = 1: c = \bar{z} = \frac{1}{n} \sum_{i=1}^{n} z_i$ (*)
- Fact: (*) is still true for general d

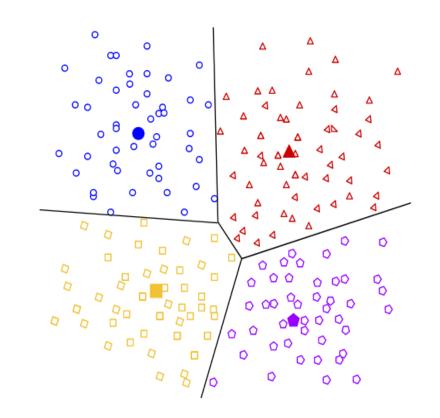
K-means algorithm [Lloyd'82]: Intuition



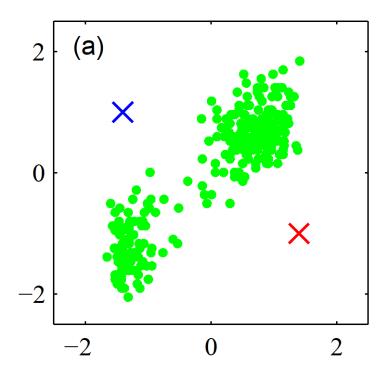
Icons are used from FlatIcon.com

K-means algorithm

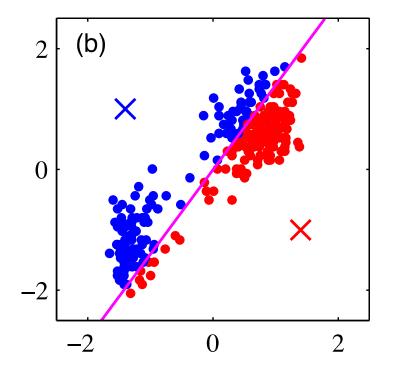
- Initialize Cluster Centroids
 - Until Convergence:
 - **Cluster Assignment:** for each point, assign it to the cluster with the nearest centroid
 - Recompute Centroid: for each cluster, recompute its centroid to be the cluster mean



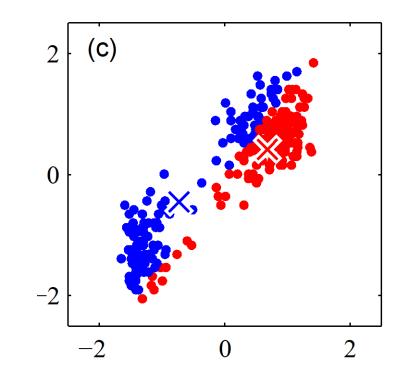
Initialization



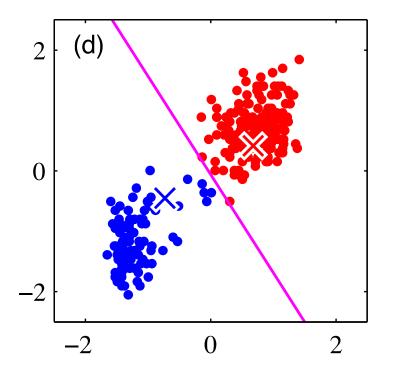
Arbitrary/random initialization of c_1 and c_2



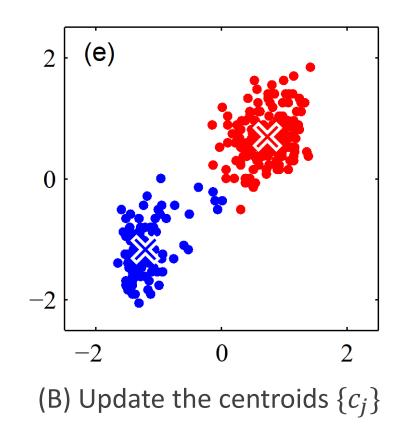
(A) update the cluster assignments.

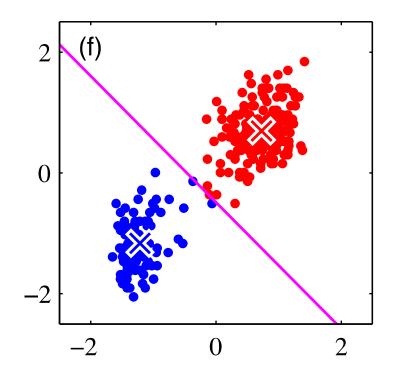


(B) Update the centroids $\{c_j\}$

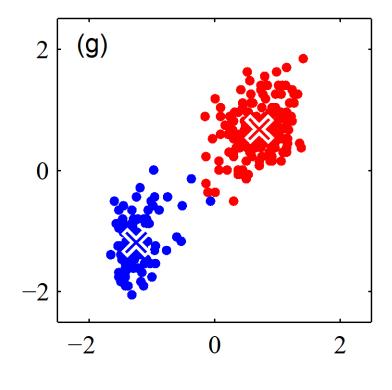


(A) update the cluster assignments.

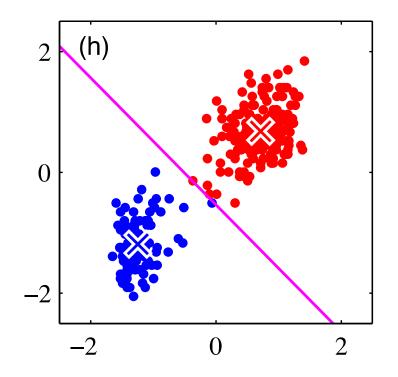




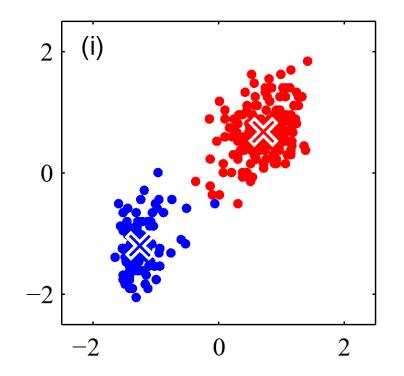
(A) update the cluster assignments.



(B) Update the centroids $\{c_j\}$

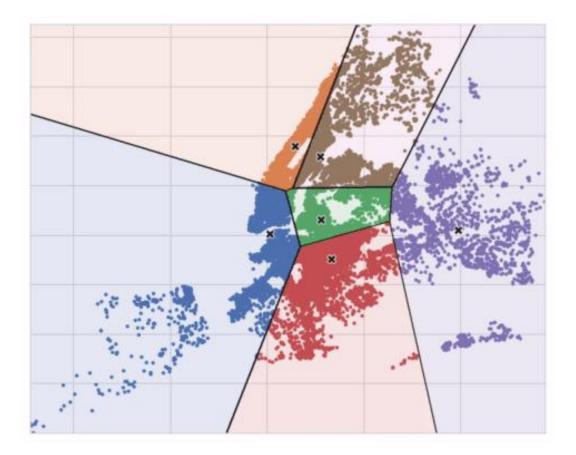


(A) update the cluster assignments.



(B) Update the centroids $\{c_j\}$

Iterating until Convergence



Promise of Convergence

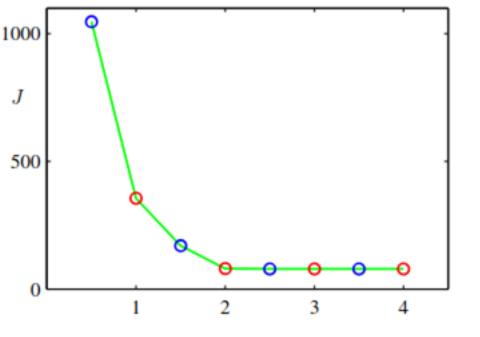
$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

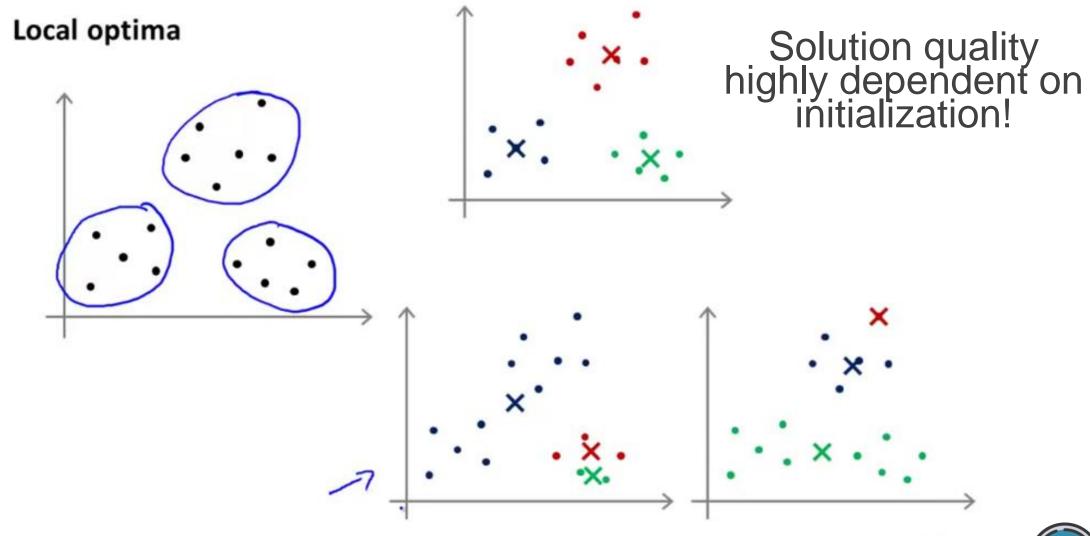
=1 if x_n is assigned to cluster k Location of centroid k =0 otherwise

But, may converge to a local rather than global minimum of J.

Solution quality highly dependent on initialization!

Plot of the cost function J after each cluster assignment step (blue points) and recompute centroid step (red points)





Andrew Ng

Next lecture (1/30)

- Linear classification; the Perceptron algorithm
- Assigned reading: CIML Chap. 4