03 Geometry & Nearest Neighbors

Chicheng Zhang

Department of Computer Science

A THE UNIVERSITY
. OF ARIZONA

Outline

e Nearest neighbor methods for supervised learning

* Clustering and the k-means algorithm

Nearest neighbors for supervised learning

Motivation

Example Given student course survey data, predict whether Alice likes Algorithms course

Idea Find a student ‘similar” to Alice & has taken Algorithm course before, say Jeremy
* If Jeremy likes Algorithms, then Alice is also likely to have the same preference.
* Or even better, find several similar students

Prediction = mapping inputs to outputs

Inputs = features that can be viewed as points in some space (possibly high-dimensional)

“Similarity” = “distance” in feature space

Suggests a geometric view of data

Example: Course Recommendation

Rating | Easy? AI? Sys? Thy? Morning? -|-_',|_|'_
+2 y y n y n
+2 y y n y n (';
+2 n y n n n
+2 n n n y n <
+2 n y y n y -
+1 n n n —
y y -l'i-
+1 y y n y n
+1 n y n y n =_=_
0 n n n n y -
W
0 y n n y y >,
0 n y n y n W
0 y y y y y
1 y vy y n y +
-1 n n y y n
-1 n n y n y —hy
1 y n y n y -+
-2 n n y y n .
-2 n y y n y %2
-2 y n y n n (.%\
-2 y n y n y -+
“ Y, i
Y

Features

ML begins by mapping data
to feature vectors

Represented as points in 5-
dimensional space for this
example

That’s too many dimensions
to plot...so we look at 2D
projections...

Measuring nearest neighbors

« Oftentimes convenient to work with feature x € R¢

* Distances in R%: notation x(f): x = (x(1), ..., x(d))

* (popular) Euclidean distance d, (x, x") = \/Z?zl(x(f) — x’(f))2
* Manhattan distance d,(x,x’) = Z?zllx(f) —x'(f)]

7
-
7
’ :>
4 .
A

---fé.\----

Y

* If we shift a feature, would the distance change?
* What about scaling a feature?

 How to extract features as real values?
e Boolean features: {Y, N} -> {0,1}
e Categorical features: {Red, Blue, Green, Black}
 Convertto({l, 2, 3, 4}?
* Better one-hot encoding: (1,0,0,0), .., (0,0,0,1) (IsRed?/isGreen?/isBlue?/IsBlack?)

Nearest Neighbor Classification

+ I Query point ? Will be classified as +

++ + but should be -
++T =

Problem: predicting using 1 nearest
. — neighbor’s label can be sensitive to noisy

? data
il
| +

— — — How to mitigate this?

I
[I —

k-nearest neighbors (k-NN): main concept

* Training set: S = { (x1,y1), ., (Xm, Yin)}

* Inductive bias: given test example x, its label should resemble the labels of nearby points

 Function
* input: x

* find the k nearest points to x from S; call their indices N (x)

« output:

* (classification) the majority vote of {y;:i € N(x)}
* (regression) the average of {y;:i € N(x)}

k-NN classification example

/ decision boundary

k-NN classification: pseudocode

* Training is trivial: store the training set

. Test: Algorithm 3 KNN-Prep1icT(D, K, %)

st —— = S [

= forn =1to N do
append to list =, S+« S @ (d(xy, &), n)

+ end for

sort in first coordinate (distance) — s S < SORT(S)
6 J <0
» fork =1to Kdo
8 (dist,n) — Sk

// store distance to training example n

// put lowest-distance objects first

// n this is the kth closest data point

o YU+ yn // vote according to the label for the nth training point

. end for
Majority vote of {y;:i € N(x)}——>:= return sicn(7)

/lreturn +1if§ > 0and —1if§ <0

* Time complexity (assuming distance calculation takes O(d) time)
» O(md +mlogm +k)=0(m(d +logm))

e Faster nearest neighbor search: k-d trees, locality sensitive hashing

10

Variations

e Classification

* Recall the majority vote rule: ¥ = argmax ZiEN(x) 1{y; = y}
ve{l,...,C}

* Soft weighting nearest neighbors: y = argmax Z’i’il w; 1{y; = v},
ve{l,...,C}

where w; < exp(—p d(x,x;)), or « 1+d(x,x;)P

e Class probability estimates

~ 1

* P(Y=ylx) =7 Yienw Hyi = ¥}

» Useful for “classification with rejection”
/ label uncertainty quantification

11

Feature issue 1: scaling

* Features having different scales can be problematic.

* Ex: ski vs. snowboard classification

N S AR LE
N

i,
2

l'I.

-

I w‘:‘A“(V\ (cm)

* One solution: feature standardization (later in the course)

Feature issue 2: irrelevant features

here’s a case in which there consider the effect of an
is one relevant feature x; and a 1- irrelevant feature x, on distances and
NN rule classifies each instance nearest neighbors
correctl
y Test example
®
Py ®
X2
,,,,,,,, -
o
Test example
Py o
00000 —0 00§
X1 X1

* Recall: how did we deal with irrelevant features in training decision trees?
* Solution: feature selection (later in the course)

13

Comparison (feature x € R%)

Interpretability

Sensitivity to
irrelevant features

training time

test time per example

Decision Tree k-NN
High Medium (example-based)
Low High

O(#nodes-d - (m + mlogm))

< 0(d m?) (when no two points have the same feature)

O(depth) 0O(m(d +logm))

&To
A

1,,... pEE
——
+— H 0 E HE N
LN | HEN

O
ﬂ_

S+ HjE|m
+— HjEjm
L L L

14

Curse of Dimensionality

Divide space into regular intervals

2

AW T

0.5 2=

Number of required cells grows exponentially in dimension!
Implications for high-dimensional data:
* Nearest neighbors may actually be far away

* k-NN classifier may not perform very well .

Curse of Dimensionality — Distance Weirdness

e Consider D-dimensional hypersphere of radius r=1 1

e What is the fraction of volume within shell of width €? o5

0.61

0.4

volume fraction

0.2

* Total volume of hypersphere concentrates onto shell at the surface!

Intuition about lower dimensions doesn’t extend to high dimensions
16

Hyperparameter tuning in k-NN

Q: What are the hyperparameters for k-NN?
» k, # of neighbors used for prediction

To b
k=1: ’ ° “o . .
* Training error = 0, overfitting o« .
k — m: ® ..

e Output a constant (majority class) prediction, underfitting

From last lecture: can use hold-out validation set to perform hyperparameter tuning, i.e., choose k

17

Hyperparameter tuning in k-NN

K=1 K=5
45 . 45 .
L]
[] ® o
4.0 1 - L 40 - L]
o, . e T o
L
L] L 1] L]
35 1 aee @ 35 4 . .=-. ® .
LA ... L] ': ° & & 8 &0 L 1]
e @9] L 1] o8n @ & 8 . L] .ld .0.. L
& a8 [] > 8 o o9 ™ o9
301 @ L I] L L] "' a|ave L *e 304 @ [I] [BN] [1 1] ase L L 1]
] &b DSo0dd @ [] & o8 S0 0% @ L]
L L] 2 290 [] - [11] o e L] L]
[] ® & @ » e o8 @ ™
s @ * e @ ®
25 - [BN (11 [] 25 - .0 sne [] [
o s “ ¢ -
[] r ¢ [
43 Eh 53 éﬂ éS iﬂ fS iﬂ 43 5h 55 gu 55 }h 73
K =10 K =50
45 45
L]
L]
L]
40 1 40 1 L]
. []
[] L] L] [] []
[] [1] L] [] a9 L]
35 4 ase @ 35 4 ase @
e & 8 &0 .: e * & 9 &0 L1}
L L] & #80 » & L] &% #90 »
e 20 L] [I e o9 L]
301 @ [I] e & [11] aee L] L 1] 301 & a @ L B] L 11] ase L] (1]
[] o0 eeede @ ® (] o0 el @ ']
[L]] o 880 L] [] L L1] = e [] []
L] L B BN] [] L] L BN] L]
L] L] [] *® L]
25 4 * @ L L1 L] L 25 * » aae L] L]
o o e e
L] L] L] L]
® 0 e 0

45 5.0 55 6.0 65 1.0 15 8.0 45 5.0 55 6.0 6.5 1.0 75

Clustering; k-means algorithm

%ﬁ@ ““&§$Zfﬂ
\\\//

7,
BANANAT

THESE
ARE ONE

ARE
SOMETHING

N\

4
7 3
/ N\
I "///,}/// \\\

Supervised Learning

Unsupervised Learning

AA
ﬂ ﬁ:ﬁﬂ -+ Eupir;ised

0 Unsuperviseg ——»
A
O Learning

'u n data

iku

Image from Dataiku

https://blog.dataiku.com/unsupervised-machine-learning-use-cases-examples

Clustering

* Input: k: the number of clusters (hyperparameter)
dataset: S = {x4, ..., x,, }

* Output:
* partition {G;}¥_, st. S =U; G; (disjoint union).
* often, we also obtain ‘centroids’

 Q: what would be a reasonable definition of centroids?

22

Centroid of a point set

* Intuition: a centroid ¢ of point set S = {z,, ..., z,,} should be close to all points
in that set

- =
” S
, 8 _ e A
. \
* A reasonable definition: ¢ minimizes the sum of squared 1 4 X i :
. L i d
distances to points in §: \ @ e !
_ : 2 2 \ * ’
c = argmin [lz — wll® + -+ llza —wll> N ,
wEeERA - -

°Whend=1zc=Z_=% 1z (%)

* Fact: (*) is still true for general d

23

K-means algorithm
[Lloyd’82]: Intuition

K-means algorithm

- Initialize Cluster Centroids

- Until Convergence:

Cluster Assignment: for each point, assign it to the
cluster with the nearest centroid

Recompute Centroid: for each cluster, recompute its
centroid to be the cluster mean

&

.- -

Initialization

Arbitrary/random initialization of ¢; and ¢,

26

Iteration 1

(A) update the cluster assignments.

=2 0 2

(B) Update the centroids {c;}

27

lteration 2

2

(A) update the cluster assignments.

—2 0 2
(B) Update the centroids {c;}

28

Iteration 3

-2 0 2

(A) update the cluster assignments.

—2 0 2

(B) Update the centroids {c;}

29

Ilteration 4

2

(A) update the cluster assignments.

(B) Update the centroids {c;}

30

Iterating until Convergence

Animation from Kaggle

https://www.kaggle.com/ryanholbrook/clustering-with-k-means

Promise of Convergence

N K
2
J = E E Frk |x1't — K- |
n=1 k=1 \ J
/ 500

=1 if x,, is assigned to cluster k Location of centroid k
=0 otherwise

But, may converge to a local
rather than global minimum of J.

Solution quality highly
dependent on initialization!

1000 f

I 2 3 4

Plot of the cost function J after each
cluster assignment step (blue points)
and recompute centroid step (red

points)
(=]

—— 5 K 2 Solution qualit

. highly dependent on

| y @) initialization!
x = E x =l

A 4

YV e
® o
()
P ®

- N ° AN x
B ® o ° x o
48 :
™ o 3(° ? i X o ; B
~t |* K | .

Andrew Ne G
=]

Image from Andrew NG Coursera Machine Learning Course

Next lecture (1/30)

* Linear classification; the Perceptron algorithm

e Assigned reading: CIML Chap. 4

34

	Slide 1: CSC 480/580 Principles of Machine Learning 03 Geometry & Nearest Neighbors
	Slide 2: Outline
	Slide 3
	Slide 4: Motivation
	Slide 5: Example: Course Recommendation
	Slide 6: Measuring nearest neighbors
	Slide 7: Nearest Neighbor Classification
	Slide 8: k-nearest neighbors (k-NN): main concept
	Slide 9: k-NN classification example
	Slide 10: k-NN classification: pseudocode
	Slide 11: Variations
	Slide 12: Feature issue 1: scaling
	Slide 13: Feature issue 2: irrelevant features
	Slide 14: Comparison (feature x element of R to the d)
	Slide 15: Curse of Dimensionality
	Slide 16: Curse of Dimensionality – Distance Weirdness
	Slide 17: Hyperparameter tuning in k-NN
	Slide 18: Hyperparameter tuning in k-NN
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Clustering
	Slide 23: Centroid of a point set
	Slide 24: K-means algorithm [Lloyd’82]: Intuition
	Slide 25: K-means algorithm
	Slide 26: Initialization
	Slide 27: Iteration 1
	Slide 28: Iteration 2
	Slide 29: Iteration 3
	Slide 30: Iteration 4
	Slide 31: Iterating until Convergence
	Slide 32: Promise of Convergence
	Slide 33
	Slide 34: Next lecture (1/30)

