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Outline

e Nearest neighbor methods for supervised learning

* Clustering and the k-means algorithm



Nearest neighbors for supervised learning



Motivation

Example Given student course survey data, predict whether Alice likes Algorithms course

Idea Find a student ‘similar” to Alice & has taken Algorithm course before, say Jeremy
* If Jeremy likes Algorithms, then Alice is also likely to have the same preference.
* Or even better, find several similar students

Prediction = mapping inputs to outputs

Inputs = features that can be viewed as points in some space (possibly high-dimensional)

“Similarity” = “distance” in feature space

Suggests a geometric view of data



Example: Course Recommendation
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Features

ML begins by mapping data
to feature vectors

Represented as points in 5-
dimensional space for this
example

That’s too many dimensions
to plot...so we look at 2D
projections...



Measuring nearest neighbors

« Oftentimes convenient to work with feature x € R¢

* Distances in R%: notation x(f): x = (x(1), ..., x(d))

* (popular) Euclidean distance d, (x, x") = \/Z?zl(x(f) — x’(f))2
* Manhattan distance d,(x,x’) = Z?zllx(f) —x'(f)]

7
-
7
’ :>
4 .
A

---fé.\----

Y

* If we shift a feature, would the distance change?
* What about scaling a feature?

 How to extract features as real values?
e Boolean features: {Y, N} -> {0,1}
e Categorical features: {Red, Blue, Green, Black}
 Convertto({l, 2, 3, 4}?
* Better one-hot encoding: (1,0,0,0), .., (0,0,0,1) (IsRed?/isGreen?/isBlue?/IsBlack?)




Nearest Neighbor Classification

+ I Query point ? Will be classified as +
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Problem: predicting using 1 nearest
. — neighbor’s label can be sensitive to noisy

? data
il
| +

— — — How to mitigate this?

I
[ I —



k-nearest neighbors (k-NN): main concept

* Training set: S = { (x1,y1 ), ., (Xm, Yin )}

* Inductive bias: given test example x, its label should resemble the labels of nearby points

 Function
* input: x

* find the k nearest points to x from S; call their indices N (x)

« output:

* (classification) the majority vote of {y;:i € N(x)}
* (regression) the average of {y;:i € N(x)}




k-NN classification example

/ decision boundary




k-NN classification: pseudocode

* Training is trivial: store the training set

. Test: Algorithm 3 KNN-Prep1icT(D, K, %)

st —— = S [

= forn =1to N do
append to list =, S+« S @ (d(xy, &), n)

+ end for

sort in first coordinate (distance) — s S < SORT(S)
6 J <0
» fork =1to Kdo
8 (dist,n) — Sk

// store distance to training example n

// put lowest-distance objects first

// n this is the kth closest data point

o YU+ yn // vote according to the label for the nth training point

. end for
Majority vote of {y;:i € N(x)}——>:= return sicn(7)

/lreturn +1if§ > 0and —1if§ <0

* Time complexity (assuming distance calculation takes O(d) time)
» O(md +mlogm +k)=0(m(d +logm))

e Faster nearest neighbor search: k-d trees, locality sensitive hashing
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Variations

e Classification

* Recall the majority vote rule: ¥ = argmax ZiEN(x) 1{y; = y}
ve{l,...,C}

* Soft weighting nearest neighbors: y = argmax Z’i’il w; 1{y; = v},
ve{l,...,C}

where w; < exp(—p d(x,x;)), or « 1+d(x,x;)P

e Class probability estimates

~ 1

* P(Y=ylx) =7 Yienw Hyi = ¥}

» Useful for “classification with rejection”
/ label uncertainty quantification
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Feature issue 1: scaling

* Features having different scales can be problematic.

* Ex: ski vs. snowboard classification
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* One solution: feature standardization (later in the course)




Feature issue 2: irrelevant features

here’s a case in which there consider the effect of an
is one relevant feature x; and a 1- irrelevant feature x, on distances and
NN rule classifies each instance nearest neighbors
correctl
y Test example
®
Py ®
X2
,,,,,,,, -
o
Test example
Py o
00000 —0 00§
X1 X1

* Recall: how did we deal with irrelevant features in training decision trees?
* Solution: feature selection (later in the course)
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Comparison (feature x € R%)

Interpretability

Sensitivity to
irrelevant features

training time

test time per example

Decision Tree k-NN
High Medium (example-based)
Low High

O(#nodes-d - (m + mlogm))

< 0(d m?) (when no two points have the same feature)

O(depth) 0O(m(d +logm))
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Curse of Dimensionality

Divide space into regular intervals
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Number of required cells grows exponentially in dimension!
Implications for high-dimensional data:
* Nearest neighbors may actually be far away

* k-NN classifier may not perform very well .



Curse of Dimensionality — Distance Weirdness

e Consider D-dimensional hypersphere of radius r=1 1

e What is the fraction of volume within shell of width €? o5

0.61

0.4

volume fraction

0.2

* Total volume of hypersphere concentrates onto shell at the surface!

Intuition about lower dimensions doesn’t extend to high dimensions
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Hyperparameter tuning in k-NN

Q: What are the hyperparameters for k-NN?
» k, # of neighbors used for prediction

To b
k=1: ’ ° “o . .
* Training error = 0, overfitting o« .
k — m: ® ..

e Output a constant (majority class) prediction, underfitting

From last lecture: can use hold-out validation set to perform hyperparameter tuning, i.e., choose k
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Hyperparameter tuning in k-NN
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Clustering; k-means algorithm
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Supervised Learning

Unsupervised Learning
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Image from Dataiku


https://blog.dataiku.com/unsupervised-machine-learning-use-cases-examples

Clustering

* Input: k: the number of clusters (hyperparameter)
dataset: S = {x4, ..., x,, }

* Output:
* partition {G;}¥_, st. S =U; G; (disjoint union).
* often, we also obtain ‘centroids’

 Q: what would be a reasonable definition of centroids?
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Centroid of a point set

* Intuition: a centroid ¢ of point set S = {z,, ..., z,,} should be close to all points
in that set

- =
” S
, 8 _ e A
. \
* A reasonable definition: ¢ minimizes the sum of squared 1 4 X i :
. L i d
distances to points in §: \ @ e !
_ : 2 2 \ * ’
c = argmin [lz — wll® + -+ llza —wll> N ,
wEeERA - -

°Whend=1zc=Z_=% 1z (%)

* Fact: (*) is still true for general d
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K-means algorithm
[Lloyd’82]: Intuition




K-means algorithm

- Initialize Cluster Centroids

- Until Convergence:

Cluster Assignment: for each point, assign it to the
cluster with the nearest centroid

Recompute Centroid: for each cluster, recompute its
centroid to be the cluster mean
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Initialization

Arbitrary/random initialization of ¢; and ¢,
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Iteration 1

(A) update the cluster assignments.

=2 0 2

(B) Update the centroids {c;}
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lteration 2

2

(A) update the cluster assignments.

—2 0 2
(B) Update the centroids {c;}
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Iteration 3

-2 0 2

(A) update the cluster assignments.

—2 0 2

(B) Update the centroids {c;}
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Ilteration 4

2

(A) update the cluster assignments.

(B) Update the centroids {c;}
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Iterating until Convergence

Animation from Kaggle



https://www.kaggle.com/ryanholbrook/clustering-with-k-means

Promise of Convergence

N K
2
J = E E Frk |x1't — K- |
n=1 k=1 \ J
/ 500

=1 if x,, is assigned to cluster k Location of centroid k
=0 otherwise

But, may converge to a local
rather than global minimum of J.

Solution quality highly
dependent on initialization!
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Plot of the cost function J after each
cluster assignment step (blue points)
and recompute centroid step (red

points)
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Next lecture (1/30)

* Linear classification; the Perceptron algorithm

e Assigned reading: CIML Chap. 4
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