CSC 480/580 Principles of Machine Learning

02 Limits of Learning

Chicheng Zhang

Department of Computer Science

Motivation

• Supervised learning is a general & useful framework

• Understand when supervised learning will and will not work

Bayes optimal classifier and its error

Optimal classification with **known D**

• Suppose:

I(A) = 1 if A happens, and = 0 otherwise

- Binary classification, 0-1 loss $\ell(y, \hat{y}) = I(y \neq \hat{y})$
- *D* is *known*: for every (x, y), $P_D(x, y)$ is known to us

- What is the f that has the smallest generalization error $L_D(f) = E_{(x,y)\sim D}I(y \neq f(x))$?
- Note (alternative expression) : $L_D(f) = P_{(x,y)\sim D} (y \neq f(x))$

Simple case: discrete domain ${\mathcal X}$

• Predicting whether the student will pass the course (y), given her project grade (x)

$P_D(x,y)$	x = 1	x = 2	x = 3		
y = -1	0.2	0.2	0.15		
y = +1	0.1	0.3	0.05		

Which classifier is better?

- $f_1(1) = -1, f_1(2) = -1, f_1(3) = -1 \implies L_D(f_1) = 0.1 + 0.3 + 0.05$
- $f_2(1) = -1, f_2(2) = +1, f_2(3) = -1 \implies L_D(f_2) = 0.1 + 0.2 + 0.05$

Is this the best classifier? Why?

- For any x, should predict y that has higher value of $P_D(x, y)$
- Intuition: predict the label that **better correlates** with the feature *x*

•
$$f^*(1) = -1, f^*(2) = +1, f^*(3) = -1$$

Bayes optimal (BO) classifier

Theorem f_{BO} achieves the smallest generalization error among all classifiers.

$$f_{BO}(x) = \arg \max_{y \in \mathcal{Y}} P_D(X = x, Y = y) = \arg \max_{y \in \mathcal{Y}} P_D(Y = y | X = x), \forall x \in \mathcal{X}$$

Example Iris dataset classification:

Iris Versicolor

Proof of theorem

Step 1 consider accuracy,

•
$$A_D(f) = 1 - L_D(f) = P_D(Y = f(X)) = \sum_x P_D(X = x, Y = f(x))$$

• Suffices to show f_{BO} has the highest accuracy

Step 2 comparison,

$$A_D(f_{BO}) - A_D(f) = \sum_{x} P_D(X = x, Y = f_{BO}(x)) - P_D(X = x, Y = f(x)) \ge 0$$
$$f_{BO}(x) = \arg\max_{y \in \mathcal{Y}} P_D(X = x, Y = y)$$

Remarks

- Similar reasoning can be used to prove the theorem with continuous domain \mathcal{X} (sum -> integral)
- This just shows deterministic classifier, can be extended to show BO is 0-1 optimal for all classifiers

Bayes error rate: alternative form

$$L_{D}(f_{BO}) = P_{D}(Y \neq f_{BO}(X))$$

= $\sum_{x} P_{D}(Y \neq f_{BO}(x) | X = x) P_{D}(X = x)$
= $\sum_{x} (1 - P_{D}(Y = f_{BO}(x) | X = x)) P_{D}(X = x)$
= $\sum_{x} (1 - \max_{y} P_{D}(Y = y | X = x)) P_{D}(X = x)$
= $E \left[1 - \max_{y} P_{D}(Y = y | X) \right]$

Bayes error rate: binary classification case

•
$$L_D(f_{BD}) = \mathbb{E}\left[1 - \max_{y} P_D(Y = y \mid X)\right]$$

= $\mathbb{E}\left[\min_{y} P_D(Y = y \mid X)\right]$

0.05

0.00

-15

-10

-5

- Note: the Bayes error rate is a property of data distribution D
- Q: for a distribution *D*, when is its Bayes error rate zero?

20

error

0

5

10

15

When is the Bayes error rate nonzero?

- $L_D(f_{BO}) = 0$ if y is **<u>deterministic</u>** given x (for $(x, y) \sim D$)
- $L_D(f_{BO}) \neq 0$ if $y \mid x$ is not deterministic for some x
- $L_D(f_{BO}) \neq 0$ when we have:
- Limited feature representation (e.g. predicting gender using only height)
- Noise in the data
 - Feature noise e.g. Sensor failure, Typo in reviews for sentiment classification
 - Label noise e.g. typo transcribing reviews
- May not have a single "correct" label

Overfitting: when does it happen and how to detect it

Overfitting vs Underfitting

• Q: should I train a shallow or deep decision tree?

- Underfitting: have the opportunity to learn something but didn't
- Overfitting: pay too much attention to idiosyncrasies to training data, and do not generalize well
- A model that neither overfits nor underfits is expected to do best

Overfitting vs Underfitting

High training error High test error

Low training error Low test error

Optimum

Low training error High test error

Unbiased model evaluation using test data

- Your boss says: I will allow your recommendation system to run on our website only if the error is <= 10%!
- How to prove it?
- Idea: reserve some data as test data for evaluating predictors

• Justification:

•
$$L_{\text{test}}(\hat{f}) = \frac{1}{|S_{\text{test}}|} \sum_{(x,y) \in S_{\text{test}}} I(y \neq \hat{f}(x))$$

• Law of large numbers $\Rightarrow L_{\text{test}}(\hat{f}) \rightarrow L_D(\hat{f})$

Law of large numbers (LLN)

- Suppose $v_1, ..., v_n$ are IID (independent & identically distributed) random variables, the sample average $\bar{v} = \frac{1}{n} \sum_{i=1}^{n} v_i$ converges to $E[v_1]$ as $n \to \infty$
- Useful in e.g. election poll
- Cornerstone of statistics

predictor f

- LLN justifies that $L_{\text{test}}(\hat{f}) \approx L_D(\hat{f})$
- Can we apply LLN to conclude that $L_{\text{train}}(\hat{f}) \approx L_D(\hat{f})$ as well?
- No! The IID condition for applying LLN would be violated

Never touch your test data!

- More precisely: test data should be used **only once** for final evaluation
- Otherwise, \hat{f} depends on test examples, $L_{\text{test}}(\hat{f}) \approx L_D(\hat{f})$ may no longer be true
- Be mindful about indirect dependence as well:
 - adaptive data analysis after seeing a previous algorithm doing badly on test data, develop a new learning algorithm that produces \hat{f}

Case Study: MNIST Dataset

All publications use standard train/test split

0	0	0	0	0	0	0	0	D	٥	0	0	0	0	0	Type +	Classifier +	Distortion \$	Preprocessing \$	Error rate + (%)
1	1	1	١	1	1		1	1	1	١	1	1	1		Linear classifier	Pairwise linear classifier	None	Deskewing	7.6 ^[10]
-	Ľ	1			<i>'</i>	~	1	1	1	1		-	1	~	Decision stream with Extremely randomized trees	Single model (depth > 400 levels)	None	None	2.7 ^[28]
2	2	2	2	a	7	2	2	2	2	2	2	2	2	2	K-Nearest Neighbors	K-NN with rigid transformations	None	None	0.96 ^[29]
					-		-	•		~		-			K-Nearest Neighbors	K-NN with non-linear deformation (P2DHMDM)	None	Shiftable edges	0.52 ^[30]
7	2	Z	2	2	7	2	z	\mathbf{x}	3	3	3	7	7	3	Boosted Stumps	Product of stumps on Haar features	None	Haar features	0.87 ^[31]
5	9	5	2	0	2	2	5	J	\mathbf{J}	0	\mathcal{O}	2	2	0	Non-linear classifier	40 PCA + quadratic classifier	None	None	3.3 ^[10]
4	4	4	ч	4	4	Ч	4	4	4	4	4	4	ч	4	Random Forest	Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC) ^[32]	None	Simple statistical pixel importance	2.8 ^[33]
•	•	Ľ	•	,	'	•	•	'		-	'	•	``	'	Support-vector machine (SVM)	Virtual SVM, deg-9 poly, 2-pixel jittered	None	Deskewing	0.56 ^[34]
5	5	5	5	<	C	<	6	~	~	\leq	5	r	5	1-	Deep neural network (DNN)	2-layer 784-800-10	None	None	1.6 ^[35]
0	5	\mathbf{J}	0	5	2	2	ע	0	J	2	5	>)	5	Deep neural network	2-layer 784-800-10	Elastic distortions	None	0.7 ^[35]
1.	^	1	1	1	r	1	1	ł.	/		1		~	^	Deep neural network	6-layer 784-2500-2000-1500-1000-500-10	Elastic distortions	None	0.35 ^[36]
φ	6	0	6	6	Р	9	6	0	Q	Q	6	6	6	6	Convolutional neural network (CNN)	6-layer 784-40-80-500-1000-2000-10	None	Expansion of the training data	0.31 ^[37]
															Convolutional neural network	6-layer 784-50-100-500-1000-10-10	None	Expansion of the training data	0.27 ^[38]
Y	7	5	7		7	М	7	2	Π	7	2	7	7	7	Convolutional neural network (CNN)	13-layer 64-128(5x)-256(3x)-512-2048-256-256-10	None	None	0.25 ^[22]
7	1	/	1		1	í		,	1	,	-	7		/	Convolutional neural network	Committee of 35 CNNs, 1-20-P-40-P-150-10	Elastic distortions	Width normalizations	0.23 ^[17]
~	a	C	•	0	6	D	12	8		C	Š	9	0	0	Convolutional neural network	Committee of 5 CNNs, 6-layer 784-50-100-500-1000-10-10	None	Expansion of the training data	0.21 ^{[24][25]}
8	Ъ	0	ø	0	8	8	8	8	•	б	٥	Y	8	8	Random Multimodel Deep Learning (RMDL)	10 NN-10 RNN - 10 CNN	None	None	0.18 ^[27]
9	କ	\boldsymbol{a}	a	a	Q	8	a	q	Ð	a	a	0	a	9	Convolutional neural network	Committee of 20 CNNS with Squeeze-and-Excitation Networks ^[39]	None	Data augmentation	0.17 ^[40]
•	C	1	l	1	1	•		``	-1	1	1	-1	1		Convolutional neural network	Ensemble of 3 CNNs with varying kernel sizes	None	Data augmentation consisting	0.09[41]

What's the problem with this?

Hundreds of publications compare to each other

Combatting overfitting via hyperparameter tuning (aka model selection)

Supervised learning setup

iid training data S has low generalization error

Generalization error: $L_D(\hat{f}) = E_{(x,y)\sim D} \ell(y, \hat{f}(x))$

Terminologies

- **Model:** the predictor \hat{f}
 - Often from a model class (family) ${\mathcal F}$,
 - e.g. $\mathcal{F} = \{ depth 5 decision trees \}, \{ linear classifiers \}$

- Parameter: specifics of \hat{f}
 - E.g. for decision tree \hat{f} : tree structure, questions in nodes, labels in leaves
 - For linear classifier: linear coefficients
- Hyperparameter: specifics of learning algorithm ${\mathcal A}$
 - E.g. in DecisionTreeTrain, constrain to output tree of depth $\leq h$
 - Tuning hyperparameters often results in {over, under}-fitting

Hyperparameter tuning using validation set

- E.g. in decision tree training, how to choose tree depth $h \in \{1, ..., H\}$?
- For each hyperparameter $h \in \{1, ..., H\}$:
 - Train Tree_h using DecisionTreeTrain by constraining the tree depth to be h
- Choose one from $\text{Tree}_1, \dots, \text{Tree}_H$
- Idea 1: choose Tree_h that minimizes training error
- Idea 2: choose Tree_h that minimizes test error
- Idea 3: further split training set to training set and validation set (development/hold-out set), (1) train Tree_h's using the (new) training set; (2) choose Tree_h that minimizes validation error

X

X

Test: 200

examples

Hyperparameter tuning using validation set

• E.g. in decision tree training, how to choose tree depth $h \in \{1, ..., H\}$?

• Law of large numbers => Validation error closely approximates generalization error (& test error)

Overfitting vs Underfitting

Underfitting: performs poorly on *both* training and validation

Overfitting: performs well on training but not on validation

- Note: this U-shaped validation error curve may not always happen "Benign overfitting" (Belkin et al, PNAS 2019)
- Nevertheless, choosing hyperparameters using validation error continues to be a good idea

Hyperparameter tuning: cross-validation

<u>Main idea</u>: improve data efficiency by splitting the training / validation data in multiple ways

N-fold Cross Validation: Partition training data into N "chunks" and for each run select one chunk to be validation data

For each run, fit to training data (N-1 chunks) and measure accuracy on validation set. Average model error across all runs.

Cross-validation: formal description

- For hyperparameter $h \in \{1, \dots, H\}$
 - For $k \in \{1, \dots, K\}$
 - train f with $S \setminus \text{fold}_k$
 - measure error rate $e_{h,k}$ of f on fold_k
 - Compute the average error of the above: $E_h = \frac{1}{K} \sum_{k=1}^{K} e_{h,k}$
- Choose $\hat{h} = \arg\min_{h} E_{h}$
- Train \hat{f} using S (all training examples) with hyperparameter \hat{h}
- Typical *K* values: 5, 10
- Special case K = |S|: leave one out cross validation (LOOCV)

Miscellaneous concepts

Inductive bias

- What classification problem is class A vs. class B?
 - Birds vs. Non-birds
 - Flying animals vs. non-flying animals

- Inductive bias: in the absence of data that narrow down the target concept, what type of predictors are we likely to prefer?
- What is the inductive bias of learning shallow decision trees?

An example real-world machine learning pipeline

- Any step can go wrong
 - E.g. data collection, data representation

- Debugging suggestion: run *oracle experiments*
 - Assuming all lower-level tasks are perfectly done, is this step achieving what we want?
- General suggestions:
 - Build the stupidest thing that could possibly work
 - Decide whether / where to fix it

T	real world	increase				
1	goal	revenue				
2	real world	better ad				
2	mechanism	display				
3	learning	classify				
<u> </u>	problem	click-through				
4	data collection	interaction w/				
Ľ		current system				
5	collected data	query, ad, click				
6	data	$how^2 \pm click$				
0	representation	$bbw^{-}, \pm chck$				
7	select model	decision trees,				
'	family	depth 20				
8	select training	subset from				
0	data	april'16				
9	train model &	final decision				
<u></u>	hyperparams	tree				
10	predict on test	subset from				
10	data	may'16				
11	evaluate error	zero/one loss				
	crutate error	for \pm click				
	developed.	(hope we				
12	deploy!	achieve our				
		goal)				

Next lecture (1/23)

- Geometric view of supervised learning; nearest neighbor methods
- Assigned reading: CIML Chap. 3 (Geometry and Nearest Neighbors)