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Motivation

e Supervised learning is a general & useful framework

* Understand when supervised learning will and will not work



Bayes optimal classifier and its error



Optimal classification with known D

* Suppose: I(A) = 1if A happens, and = 0 otherwise
* Binary classification, 0-1 loss £(y, V) = I(y # ¥)
* D is known: for every (x,y), Pp(x,y) is known to us

predictor f

* What is the f that has the smallest generalization error

}
Lp(f) = Eayp~pl(y # f(x))? J )
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Generalization error: Lp (f) = Ey)~pI(y # f(x))
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* Note (alternative expression) : Lp(f) = P )~p (v # f(x))
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Simple case: discrete domain X

* Predicting whether the student will pass the course (y), given her project grade (x)

y =1
y =+1 0.1 0.05

Which classifier is better?
c fF(D=-1,/2)=-1,3)=-1 = Ly(f)=0.1+0.3+0.05
c L) =-1,£2)=+1,B)=-1 = Lp(f,) =0.1+0.2+0.05

Is this the best classifier? Why?
* For any x, should predict y that has higher value of Py (x, y)

* Intuition: predict the label that better correlates with the feature x

) =-1f@2)=+1,fB)=-1




Bayes optimal (BO) classifier

Theorem [, achieves the smallest generalization error among all classifiers.
feo(x) =argmaxPp(X =x,Y =y) =argmaxPp(Y =y |X =x),Vx € X
9 YEY yeEY Y

Example Iris dataset classification:
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Proof of theorem

Step 1 consider accuracy,

* Ap(f) =1-Lp(f) =Pp(Y =f(X)) = Ex Po(X =x,Y = f(x))

* Suffices to show [, has the highest accuracy

Step 2 comparison,

Ap(fpo) — Ap(f) = ZPD(X =x,Y = fpo(®)) = Pp(X =x,Y =f(x)) = 0

feo(x) = argmaxPp(X = x,Y = y)
yEY

Remarks
e Similar reasoning can be used to prove the theorem with continuous domain X (sum -> integral)

* This just shows deterministic classifier, can be extended to show BO is 0-1 optimal for all classifiers



Bayes error rate: alternative form

Lp(fgo) = Po(Y # fzo (X))
=2xPp(Y # fpo(x) | X = x) Pp(X = x)

=2x(1 = Pp(Y = fgo(x) | X = x)) Pp(X = x)

=Zx(1—maxPD(Y:y|X=x))PD(X=x)
y

= E[l—maxPD(YzyIX)]
y



Bayes error rate: binary classification case

* Lp(fgp) = E|1— m;;ﬂlXPD(Y =yl X)]
= E :myin P,(Y =vy| X)]

=Y,min(Pp(Y =+1,X =x),Pp(Y = —1,X = x))

0.15
y=+1 0.1 0.3 0.05

o)
y=—1 0.2 0.2

* Note: the Bayes error rate is a property of data distribution D

* Q: for a distribution D, when is its Bayes error rate zero?
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When is the Bayes error rate nonzero?

* Lp(fgo) = 0if y is deterministic given x (for (x,y) ~ D)

Lp(fgo) # 0if y | x is not deterministic for some x

Lp(fgo) # 0 when we have:

Limited feature representation (e.g. predicting gender using only height)

Noise in the data
* Feature noise — e.g. Sensor failure, Typo in reviews for sentiment classification
* Label noise — e.g. typo transcribing reviews

May not have a single “correct” label
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Overfitting: when does it happen
and how to detect it



Overfitting vs Underfitting

Q: should | train a shallow or deep decision tree?

Shallow tree: N Deep tree:
A
!l ' mmam EEE
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Underfitting: have the opportunity to learn something but didn’t

Overfitting: pay too much attention to idiosyncrasies to training data, and do not generalize well

A model that neither overfits nor underfits is expected to do best
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Overfitting vs Underfitting

Underfit Optimum Overfit
(high bias) (high variance)
o ®

*x Kk k
High training error Low training error Low training error
High test error Low test error High test error

Source: ibm.com



Unbiased model evaluation using test data

* Your boss says: | will allow your recommendation system to run on our website only if the error is <=

10%!

How to prove it?

|Idea: reserve some data as test data for evaluating predictors

Training: 800 examples

Test: 200
examples

Justification:

¢ Ltest(f) — #Z(x,y)eStestI(y i f(x))

|Stest]

Law of large numbers = Ltest(f) - Lp (f)

N

predictor f
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Law of large numbers (LLN)

Suppose vy, ..., U, are lID (independent & identically distributed) random variables, the sample

_ 1
average v = ;27{;1 v; converges to E[v;] asn — oo

Useful in e.g. election poll

Cornerstone of statistics

BB-EB'B'B

Training: 800 examples

Test: 200
examples

LLN justifies that Ltest(f) ~ Lp (f)
Can we apply LLN to conclude that Ltrain(f) ~ Lp (f) as well?
No! The IID condition for applying LLN would be violated

N

predictor f
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Never touch your test data!

Test: 200
examples

N 7

predictor f

Training: 800 examples

* More precisely: test data should be used only once for final evaluation

* Otherwise, f depends on test examples, Ltest(f) ~ Lp (f) may no longer be true

* Be mindful about indirect dependence as well:

* adaptive data analysis — after seeing a previous algorithm doing badly on test data, develop a
new learning algorithm that produces f



Case Study: MNIST Dataset

All publications use standard train/test split

Type s

Linear classifier

Decision stream with Extremely
randomized trees

K-Nearest Neighbors
K-Nearest Neighbors
Boosted Stumps

Non-linear classifier
Random Forest

Support-vector machine (SVM)
Deep neural network (DNN)

Deep neural network

Deep neural network

Convolutional neural network (CNN)
Convolutional neural network
Convolutional neural network (CNN)
Convolutional neural network
Convolutional neural network

Random Multimodel Deep Learning
{(RMDL)

Convolutional neural network

VA SHLWN~O
AAJ AR -0
VN GCU~YWPNP~—-0
DS s LCUN e~
D o-d e wy —Q
DA~ PP NLWBLNO
PN I N EWNN O
SN gL Py ~0
LRI LRV PMNIN
S99 I NARNRGWL~D
Do NS NPOLGOL~-0
SLEY LWV~
DY T N = WY -
SANOYKTWPNPND

Convolutional neural network

Classifier #*

Pairwise linear classifier
single model (depth = 400 levels)

K-NM with rigid transformations
K-NN with non-linear deformation (P2DHMDM)
Product of stumps on Haar features

40 PCA + quadratic classifier
Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC)F2!

Virtual SVM, deg-9 poly, 2-pixel jitiered

2-layer 784-800-10

2-layer 784-800-10

6-layer 784-2500-2000-1500-1000-500-10

6-layer 784-40-80-500-1000-2000-10

6-layer 784-50-100-500-1000-10-10

13-layer 64-128(5x)-256(3x)-512-2048-256-256-10
Commitiee of 35 CNNs, 1-20-P-40-P-150-10

Committee of 5 CNNs, 6-layer 784-50-100-500-1000-10-10
10 NN-10 RNN - 10 CNN
Committee of 20 CNNS with Squeeze-and-Excitation Networks!=%]

Ensemble of 3 CNNs with varying kemnel sizes

What’s the problem with this?

Distortion =

None

None

None
None
None

MNone

Mone

Mone
None
Elastic distortions
Elastic distortions
Mone
MNone
Mone
Elastic distortions

None

None

None

None

Preprocessing =

Deskewing
None

None
Shiftable edges
Haar features

None

Simple statistical pixel
importance

Deskewing
None
None
None
Expansion of the training data
Expansion of the training data
None
Width normalizations

Expansion of the training data
None

Data augmentation

Data augmentation consisting
of rotation and translation

Hundreds of publications compare to each other

Error
rate #
(%)
7.610]

2 7128

0.31E7

0 27138
0.25122]
02307

0.21124)

0.18127

0.17140]

0.09141)



Combatting overfitting via hyperparameter tuning
(aka model selection)



Supervised learning setup

training data S / E] \
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airplane 3._6 . . % » | |
automobile E - . E : :
Bl T mBE W& training : I
cat Bq supervised | '
~ EWERE | o ) [ | [
dog Wil - / | I
wo R B .
horse H - r38 m n ' f (X) l
ship = T : \ :
truck d n k , I !

\ |

\ /

o(y, £ (x))

e e e - e a=

* Goal: design learning algorithm <A such that its output fon

iid training data S has low generalization error
Generalization error: Ly (f) = E(xy)~D {’(y,f(x))
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Terminologies

: 2
* Model: the predictor f g o
e Often from a model class (family) F, (ko)  [ErenOerSys]
no yes

* e.g. F = {depth — 5 decision trees}, {linear classifiers}

Imorning?| [likedOtherSys?]

dod & -

* E.g. for decision tree f: tree structure, questions in nodes, labels in leaves

* Parameter: specifics of f

* For linear classifier: linear coefficients

* Hyperparameter: specifics of learning algorithm A
* E.g. in DecisionTreeTrain, constrain to output tree of depth < h
* Tuning hyperparameters often results in {over, under}-fitting

( ;
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Hyperparameter tuning using validation set

E.g. in decision tree training, how to choose tree depth h € {1, ..., H}?

For each hyperparameter h € {1, ..., H}:

* Train Tree; using DecisionTreeTrain by constraining

the tree depth to be h

Choose one from Treey, ..., Treey

Idea 1: choose Treey, that minimizes training error €3

ldea 2: choose Tree;, that minimizes test error

ldea 3: further split training set to training set and validation set (development/hold-out set), (1)

o

!l mEem EEE
'EEE EEN
'EEE EEN
‘'EEE EEN
'EEE EEN

‘' mmm mmEm

| I | |

train Treey,’s using the (new) training set; (2) choose Treey, that minimizes validation error

Training: 700 examples

Val:100
examples

Test: 200
examples
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Hyperparameter tuning using validation set

* E.g. in decision tree training, how to choose tree depth h € {1, ..., H}?

loss

L

validation

hyperparameter

00000000000

...............
................
........

.............
...........

e Law of large numbers => Validation error closely approximates generalization error (& test error)
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Overfitting vs Underfitting

Underfitting: performs poorly on both training and validation
Overfitting: performs well on training but not on validation

Error Under- ! Over-
fitting | fitting Validation
‘ set

Training
set

“sweet spot” _

.

Source: ibm.com hyperparameter

* Note: this U-shaped validation error curve may not always happen — “Benign overfitting”
(Belkin et al, PNAS 2019)
* Nevertheless, choosing hyperparameters using validation error continues to be a good idea



Hyperparameter tuning: cross-validation

Main idea: improve data efficiency by splitting the training / validation data in

multiple ways

N-fold Cross Validation: Partition training
data into N “chunks” and for each run
select one chunk to be validation data

For each run, fit to training data (N-1
chunks) and measure accuracy on
validation set. Average model error
across all runs.

Source: Bishop, C. PRML



Cross-validation: formal description

For hyperparameter h € {1, ..., H}
* Fork e{1,..,K}

* train f with S\ foldy Training set
* measure error rate ey,  of f on fold, fold,, e folds
- run 1
. p —1yK
Compute the average error of the above: E; = szzl enk — .
* Choose h = argmin Ej, ] wn 3

Train f using S (all training examples) with hyperparameter h

runs

" - -
]

Typical K values: 5, 10

Special case K = |S|: leave one out cross validation (LOOCV)



Miscellaneous concepts



Inductive bias

* What classification problem is class A vs. class B?
* Birds vs. Non-birds
* Flying animals vs. non-flying animals

* Inductive bias: in the absence of data that narrow down the target concept, what type of predictors
are we likely to prefer?

 What is the inductive bias of learning shallow decision trees?

27



An example real-world machine learning pipeline

* Any step can go wrong
* E.g. data collection, data representation

* Debugging suggestion: run oracle experiments
* Assuming all lower-level tasks are perfectly done,
is this step achieving what we want?

e General suggestions:
e Build the stupidest thing that could possibly work
* Decide whether / where to fix it

L real world increase
goal revenue

, realworld better ad
mechanism display
learning classify

> problem click-through

interaction w/

4  data collection current system

5  collected data query, ad, click
data bow?, + click

6 representation oW, % clic

. select model decision trees,
family depth 20

8 select training subset from
data april’16

9 train model &  final decision

hyperparams

tree

10

11

predict on test
data

evaluate error

subset from
may’16
zero/one loss
for + click

12

deploy!

(hope we
achieve our
goal)
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Next lecture (1/23)

* Geometric view of supervised learning; nearest neighbor methods

» Assigned reading: CIML Chap. 3 (Geometry and Nearest Neighbors)
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