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Motivation

• Supervised learning is a general & useful framework 

• Understand when supervised learning will and will not work
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Bayes optimal classifier and its error



Optimal classification with known 𝑫

• Suppose:

• Binary classification, 0-1 loss ℓ 𝑦, ො𝑦 = 𝐼 𝑦 ≠ ො𝑦

• 𝐷 is known: for every (𝑥, 𝑦), 𝑃𝐷(𝑥, 𝑦) is known to us

• What is the 𝑓 that has the smallest generalization error

𝐿𝐷(𝑓) = E 𝑥,𝑦 ∼𝐷𝐼 𝑦 ≠ 𝑓(𝑥) ?

• Note (alternative expression) : 𝐿𝐷(𝑓) = 𝑃 𝑥,𝑦 ∼𝐷 𝑦 ≠ 𝑓(𝑥)
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test

, cat

𝑦𝑥

Generalization error: 𝐿𝐷(𝑓) =  E 𝑥,𝑦 ∼𝐷𝐼 𝑦 ≠ 𝑓(𝑥)

predictor 𝒇

𝑓(𝑥)

𝐼 𝑦 ≠ 𝑓(𝑥)

𝐼 𝐴 = 1 if 𝐴 happens, and = 0 otherwise 



Simple case: discrete domain 𝒳

𝑃𝐷 𝑥, 𝑦 𝑥 = 1 𝑥 = 2 𝑥 = 3

𝑦 = −1 0.2 0.2 0.15

𝑦 = +1 0.1 0.3 0.05
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Which classifier is better?

• 𝑓1 1 = −1, 𝑓1 2 = −1, 𝑓1 3 = −1    ⇒  𝐿𝐷 𝑓1 = 0.1 + 0.3 + 0.05

• 𝑓2 1 = −1, 𝑓2 2 = +1, 𝑓2 3 = −1  ⇒  𝐿𝐷 𝑓2 = 0.1 + 0.2 + 0.05

Is this the best classifier?  Why?

• For any 𝑥, should predict 𝑦 that has higher value of 𝑃𝐷 𝑥, 𝑦

• Intuition: predict the label that better correlates with the feature 𝑥

• 𝑓∗ 1 = −1, 𝑓∗ 2 = +1, 𝑓∗ 3 = −1

• Predicting whether the student will pass the course (𝑦), given her project grade (𝑥)  



Bayes optimal (BO) classifier

Theorem 𝑓𝐵𝑂 achieves the smallest generalization error among all classifiers.
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𝑓𝐵𝑂 𝑥 = arg max
𝑦∈𝒴

𝑃𝐷(𝑋 = 𝑥, 𝑌 = 𝑦) = arg max
𝑦∈𝒴

𝑃𝐷 𝑌 = 𝑦 𝑋 = 𝑥) , ∀𝑥 ∈ 𝒳

Iris Setosa

Example Iris dataset classification:

Iris Versicolor Iris Virginica



Proof of theorem

Step 1 consider accuracy,

• 𝐴𝐷 𝑓 = 1 − 𝐿𝐷 𝑓 = 𝑃𝐷 𝑌 = 𝑓 𝑋 = σ𝑥 𝑃𝐷 𝑋 = 𝑥, 𝑌 = 𝑓 𝑥

• Suffices to show 𝑓𝐵𝑂 has the highest accuracy

Step 2 comparison, 

𝐴𝐷 𝑓𝐵𝑂 − 𝐴𝐷 𝑓 = 

𝑥

𝑃𝐷 𝑋 = 𝑥, 𝑌 = 𝑓𝐵𝑂 𝑥 − 𝑃𝐷 𝑋 = 𝑥, 𝑌 = 𝑓 𝑥 ≥ 0

Remarks

• Similar reasoning can be used to prove the theorem with continuous domain 𝒳 (sum -> integral)

• This just shows deterministic classifier, can be extended to show BO is 0-1 optimal for all classifiers
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𝑓𝐵𝑂 𝑥 = arg max
𝑦∈𝒴

𝑃𝐷(𝑋 = 𝑥, 𝑌 = 𝑦)



Bayes error rate: alternative form

𝐿𝐷 𝑓𝐵𝑂 = 𝑃𝐷 𝑌 ≠ 𝑓𝐵𝑂 𝑋

= σ𝑥 𝑃𝐷 𝑌 ≠ 𝑓𝐵𝑂 𝑥 ∣ 𝑋 = 𝑥 𝑃𝐷 𝑋 = 𝑥

= σ𝑥(1 − 𝑃𝐷 𝑌 = 𝑓𝐵𝑂 𝑥 ∣ 𝑋 = 𝑥 ) 𝑃𝐷(𝑋 = 𝑥)

= σ𝑥 1 − max
𝑦

𝑃𝐷 𝑌 = 𝑦 ∣ 𝑋 = 𝑥 𝑃𝐷 𝑋 = 𝑥

= E 1 − max
𝑦

𝑃𝐷 𝑌 = 𝑦 ∣ 𝑋
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Bayes error rate: binary classification case

• 𝐿𝐷 𝑓𝐵𝐷 = E 1 − max
𝑦

𝑃𝐷 𝑌 = 𝑦 ∣ 𝑋

= E min
𝑦

𝑃𝐷 𝑌 = 𝑦 ∣ 𝑋

= σ𝑥 min( 𝑃𝐷 𝑌 = +1, 𝑋 = 𝑥 , 𝑃𝐷 𝑌 = −1, 𝑋 = 𝑥 )

• Note: the Bayes error rate is a property of data distribution 𝐷

• Q: for a distribution 𝐷, when is its Bayes error rate zero?
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𝑃𝐷 𝑥, 𝑦 𝑥 = 1 𝑥 = 2 𝑥 = 3

𝑦 = −1 0.2 0.2 0.15

𝑦 = +1 0.1 0.3 0.05



When is the Bayes error rate nonzero?

• 𝐿𝐷 𝑓𝐵𝑂 ≠ 0 when we have:  

• Limited feature representation (e.g. predicting gender using only height) 

• Noise in the data

• Feature noise – e.g. Sensor failure, Typo in reviews for sentiment classification

• Label noise – e.g. typo transcribing reviews

• May not have a single “correct” label
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• 𝐿𝐷 𝑓𝐵𝑂 = 0 if 𝑦 is deterministic given 𝑥 (for 𝑥, 𝑦 ∼ 𝐷)

• 𝐿𝐷 𝑓𝐵𝑂 ≠ 0 if 𝑦 ∣ 𝑥 is not deterministic for some 𝑥
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Overfitting: when does it happen 
and how to detect it 



Overfitting vs Underfitting

• Q: should I train a shallow or deep decision tree?

• Shallow tree: Deep tree: 

• Underfitting: have the opportunity to learn something but didn’t

• Overfitting: pay too much attention to idiosyncrasies to training data, and do not generalize well

• A model that neither overfits nor underfits is expected to do best 
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Overfitting vs Underfitting

Source: ibm.com



Unbiased model evaluation using test data

• Your boss says: I will allow your recommendation system to run on our website only if the error is <= 
10%!

• How to prove it?

• Idea: reserve some data as test data for evaluating predictors

• Justification: 

• 𝐿test
መ𝑓 =

1

|𝑆test|
σ 𝑥,𝑦 ∈𝑆test

𝐼 𝑦 ≠ መ𝑓(𝑥)

• Law of large numbers ⇒ 𝐿test
መ𝑓 → 𝐿𝐷

መ𝑓
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Test: 200 
examples

Training: 800 examples

predictor 𝒇



Law of large numbers (LLN)

• Suppose 𝑣1, … , 𝑣𝑛 are IID (independent & identically distributed) random variables, the sample 

average ҧ𝑣 =
1

𝑛
σ𝑖=1

𝑛 𝑣𝑖 converges to E[𝑣1] as 𝑛 → ∞

• Useful in e.g. election poll

• Cornerstone of statistics

• LLN justifies that 𝐿test
መ𝑓 ≈ 𝐿𝐷

መ𝑓

• Can we apply LLN to conclude that 𝐿train
መ𝑓 ≈ 𝐿𝐷

መ𝑓 as well?

• No! The IID condition for applying LLN would be violated 
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Test: 200 
examples

Training: 800 examples

predictor 𝒇



Never touch your test data!

• More precisely: test data should be used only once for final evaluation

• Otherwise, መ𝑓 depends on test examples, 𝐿test
መ𝑓 ≈ 𝐿𝐷

መ𝑓 may no longer be true 

• Be mindful about indirect dependence as well:

• adaptive data analysis – after seeing a previous algorithm doing badly on test data, develop a 

new learning algorithm that produces መ𝑓
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Test: 200 
examples

Training: 800 examples

predictor 𝒇



Case Study: MNIST Dataset
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All publications use standard train/test split Hundreds of publications compare to each other

What’s the problem with this?
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Combatting overfitting via hyperparameter tuning
(aka model selection)



Supervised learning setup

• Goal: design learning algorithm 𝒜 such that its output መ𝑓on 

iid training data 𝑆 has low generalization error
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supervised 
learning 

algorithm 𝒜
Predictor መ𝑓

መ𝑓(𝑥)

training

test

𝐷

, cat

ℓ 𝑦, መ𝑓(𝑥)

𝑦𝑥

Generalization error: 𝐿𝐷( መ𝑓) =  E 𝑥,𝑦 ∼𝐷 ℓ 𝑦, መ𝑓(𝑥)

training data 𝑆 



Terminologies

• Model: the predictor መ𝑓

• Often from a model class (family) ℱ,

• e.g. ℱ = {depth − 5 decision trees}, {linear classifiers}

• Parameter: specifics of መ𝑓

• E.g. for decision tree መ𝑓: tree structure, questions in nodes, labels in leaves

• For linear classifier: linear coefficients

• Hyperparameter: specifics of learning algorithm 𝒜

• E.g. in DecisionTreeTrain, constrain to output tree of depth ≤ ℎ

• Tuning hyperparameters often results in {over, under}-fitting
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Hyperparameter tuning using validation set

• E.g. in decision tree training, how to choose tree depth ℎ ∈ {1, … , 𝐻}?

• For each hyperparameter ℎ ∈ {1, … , 𝐻}:

• Train Treeℎ using DecisionTreeTrain by constraining

the tree depth to be ℎ

• Choose one from Tree1, … , Tree𝐻

• Idea 1: choose Treeℎ that minimizes training error

• Idea 2: choose Treeℎ that minimizes test error

• Idea 3: further split training set to training set and validation set (development/hold-out set), (1) 
train Treeℎ’s using the (new) training set; (2) choose Treeℎ that minimizes validation error
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Test: 200 
examples

Training: 700 examples
Val:100 

examples



Hyperparameter tuning using validation set

• E.g. in decision tree training, how to choose tree depth ℎ ∈ {1, … , 𝐻}?

• Law of large numbers => Validation error closely approximates generalization error (& test error)
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hyperparameter



Overfitting vs Underfitting
Underfitting: performs poorly on both training and validation

Overfitting: performs well on training but not on validation

Source: ibm.com hyperparameter

• Note: this U-shaped validation error curve may not always happen – “Benign overfitting” 
(Belkin et al, PNAS 2019) 

• Nevertheless, choosing hyperparameters using validation error continues to be a good idea



Hyperparameter tuning: cross-validation

Source: Bishop, C. PRML

N-fold Cross Validation: Partition training 
data into N “chunks” and for each run 
select one chunk to be validation data

For each run, fit to training data (N-1 
chunks) and measure accuracy on 

validation set.  Average model error 
across all runs.

Main idea: improve data efficiency by splitting the training / validation data in 
multiple ways



Cross-validation: formal description

• For hyperparameter ℎ ∈ {1, … , 𝐻}

• For 𝑘 ∈ {1, … , 𝐾}

• train 𝑓 with 𝑆 ∖ fold𝑘

• measure error rate 𝑒ℎ,𝑘 of 𝑓 on fold𝑘

• Compute the average error of the above: 𝐸ℎ =
1

𝐾
σ𝑘=1

𝐾 𝑒ℎ,𝑘

• Choose ℎ = arg min
ℎ

𝐸ℎ

• Train መ𝑓 using 𝑆 (all training examples) with hyperparameter ℎ

• Typical 𝐾 values: 5, 10

• Special case 𝐾 = |𝑆|: leave one out cross validation (LOOCV)
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Training set 𝑆

fold1,  … ,  fold5
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Miscellaneous concepts



Inductive bias

• What classification problem is class A vs. class B?

• Birds vs. Non-birds

• Flying animals vs. non-flying animals

• Inductive bias: in the absence of data that narrow down the target concept, what type of predictors 
are we likely to prefer?

• What is the inductive bias of learning shallow decision trees?
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An example real-world machine learning pipeline

• Any step can go wrong

• E.g. data collection, data representation

• Debugging suggestion: run oracle experiments

• Assuming all lower-level tasks are perfectly done, 

is this step achieving what we want?

• General suggestions:

• Build the stupidest thing that could possibly work

• Decide whether / where to fix it
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Next lecture (1/23)

• Geometric view of supervised learning; nearest neighbor methods

• Assigned reading: CIML Chap. 3 (Geometry and Nearest Neighbors)

29


	Slide 1: CSC 480/580 Principles of Machine Learning  02 Limits of Learning
	Slide 2: Motivation
	Slide 3
	Slide 4: Optimal classification with known bold italic cap D
	Slide 5: Simple case: discrete domain script cap X
	Slide 6: Bayes optimal (BO) classifier
	Slide 7: Proof of theorem
	Slide 8: Bayes error rate: alternative form
	Slide 9: Bayes error rate: binary classification case
	Slide 10: When is the Bayes error rate nonzero?
	Slide 11
	Slide 12: Overfitting vs Underfitting
	Slide 13: Overfitting vs Underfitting
	Slide 14: Unbiased model evaluation using test data
	Slide 15: Law of large numbers (LLN)
	Slide 16: Never touch your test data!
	Slide 17: Case Study: MNIST Dataset
	Slide 18
	Slide 19: Supervised learning setup
	Slide 20: Terminologies
	Slide 21: Hyperparameter tuning using validation set
	Slide 22: Hyperparameter tuning using validation set
	Slide 23: Overfitting vs Underfitting
	Slide 24: Hyperparameter tuning: cross-validation
	Slide 25: Cross-validation: formal description
	Slide 26
	Slide 27: Inductive bias
	Slide 28: An example real-world machine learning pipeline
	Slide 29: Next lecture (1/23)

