12 Reinforcement learning (RL)

Chicheng Zhang

Department of Computer Science

A THE UNIVERSITY
. OF ARIZONA

HW3: a few comments

(Earlhquakﬂ) (Burglar)
 What factorization of P(E, B, A) does this graph correspond to? \/

- P(E,B,A) =P(E)P(B) P(A|E,B) o
* What does this equation mean, exactly? { j
* Foreverye,b,a € {0,1},
P(E=e¢e,B=b,A=a)=P(E=¢e)P(B=b)P(A=alE =¢,B=0>b)
(in total, 8 equalities)

e|IsE1B|A”?
* Infact, E and B are negatively correlated given A = 1

HW3: a few comments

e P3 (1) x={(ry.x2) and z = (21, 22) are real vectors; let K (r.z) = x; - 22.

* A possible answer:
* |tis not a kernel, because we can find x, z such that K(x,z) < 0

* What is the problem with this answer?
 Kernel functions do allow K (x,z) < 0!
 Kernel functions don’t allow K (x, x) < 0 though

HW3: a few comments

 P3 (2) x and z are integers between () and 100; let K{z, z) = min(x, z).

* A possible answer:

* |t is a kernel, because it satisfies positivity (K (x,x) = 0 for all x) and symmetry (K(x,z) =
K(z, x) for all x, z)

* What is the problem with this answer?

* Positivity and symmetry are only necessary condition for a function to be a kernel, but not
sufficient!

* See a counterexample K(x,z) = max(x, z) in our lecture

Reinforcement learning references

e “Reinforcement learning”’ book by Sutton & Barto (available online)

* RL course by David Silver:
https://www.youtube.com/watch?v=2pWv7GOvufO&Iist=PLzuuYNsE1EZAXYR4F)75jcJseBmo4KQ9-

 RL MOOC by Martha White and Adam White @UAlberta:
https://www.coursera.org/specializations/reinforcement-learning

https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLzuuYNsE1EZAXYR4FJ75jcJseBmo4KQ9-
https://www.coursera.org/specializations/reinforcement-learning

Outline

* Background / Markov Decision Processes (MDPs)
* Planning in MDPs

* Reinforcement Learning in MDPs

Background / Markov Decision Processes

Computer Science

Engineering

Psychology

Source: David Silver

Reinforcement Learning (RL)

Learning Agent Environment
Determing acton basaed on state

* Applications:

Alpha GP Zercg
Starting from scratc

Akshay Krishnamurthy & Wen Sun, .
https://rltheorybook.github.io/colt21_partl.pdf

Characteristics of RL

How does RL differ from other ML frameworks?

* There is no supervisor, only a reward signal (evaluative vs. instructive feedback)
* Feedback is not instantaneous (delayed consequences)

e Datais not i.i.d. (it is sequential, time matters)

* The agent’s actions affect subsequent data it receives

Source: David Silver

10

Examples of RL

e Fly stunt maneuvers in a helicopter (reward: not crashing)

* Manage an investment portfolio (reward: S)

e Play many different video games (reward: score)

* Make a humanoid robot walk (reward: distance traveled)

* Defeat world champion in Backgammon (reward: win/lose)

» Defeat world champion in Go! (reward: win/lose)

11

https://www.youtube.com/watch?v=0JL04JJjocc
https://www.youtube.com/watch?v=TmPfTpjtdgg
https://www.youtube.com/watch?v=gn4nRCC9TwQ

Markov Decision Process (MDP)

as € A St €S
Learning Agent Environment
Determing acton basaed on state

_/

~and reward and next state

T: € [0,1] S¢y+1 € S
e Environment model M
do aj a>
* Set of states S so > 5 > 5 >
* Set of actions A Fo Fi I

https://rltheorybook.github.io/colt21_partl.pdf 12

Example: Learning to Navigate in the grid world

0
0 100 (7
> — G

1 |
I} | 100

e State s: the location of the agent
* Each arrow represents an action a and the associated number represents deterministic reward (s, a)

e How does the next state and current state relate to each other?

13

Markov Decision Process (MDP)

as € A St €S
Learning Agent Environment
Determing acton basaed on state

_/

~and reward and next state

1 € [0,1] St+1 ES
Markov assumption:
P(r¢|Se, Qp) Sp—1, Qg) = P(7¢|Se, ap) i.e. the future is independent of the past,
P(spi11Se, Qpr Se—1, Qpt, o) = P(S¢11|Se, ap) given the present

4
These are unknown to the learner!

14

Markov Decision Process (MDP)

as € A St €S
Learning Agent Environment
Determing acton basaed on state

.l-! /,,——'_—\
%
Sand reward and neaxt state

T: € [0,1] S¢y+1 € S

—

* A policy is the agent’s behavior

* It is a mapping from state to action, e.g. aop aj

* Deterministic policy: a = m(s)
e Stochastic policy:m(als) =P(A;=alS; =5)

* A policy, when interacting with MDP, generates a random trajectory sq, ag, 7y, S1, A1, T4, ---

15

Markov Decision Process (MDP)

atEA StES

Learning Agent Environment

Determing acton basaed on state

_/

~and reward and next state

T: € [0,1] S¢y+1 € S

Goal:

Learn a policy m: S — A for choosing actions that
maximizes its expected cumulative (discounted) reward

E [ro+yr +y%r,+ - 1sg]where0 <y <1

for every possible starting state s,

> 5o

16

Summary: Specification of the environment
* Environment model MDP M = (S,A,R,P,y)
* R:a conditional probability table of current reward

given current state & current action
Sl Ao +5 0.7

Sl Ao 0 0.3

e P:aconditional probability table of next state

given current state & current action
Sl ap SO 0.7

S1 ag S, 0.2

Environment

17

Discounted cumulative reward

¢ RO=TO+]/T1+)/2T2+"°, OS)/<1
 Discount: treating current reward as more worthy

than future rewards
* Larger y = focus more on longer term future

* Boundedness property:

OSROS1+]/+]/2+---S$

* ¥y = 1: Ry may diverge to +oo

. 1
* Maximize long-term average reward ;Zfﬂ T

11l

|

Gamme power =oqibence ~°, 57, 47 1 1"

18

The intention behind the RL formulation

* Note that the formulation is reward-driven.

* Example: Robot learning: move a dish from one place to another
* We can assign reward +10 when it accomplishes the task
* We can also assign reward +1 when it picks up the dish successfully

The Reward Hypothesis:
All goals can be described by the maximization of expected cumulative reward.

(from David Silver’s lecture)

N R

Walk Forward displacement

Escape maze -1if not out yet; O if out

Robots for recycling soda cans +1 if a new can collected; -10 if run into things;
0 otherwise.

Win chess 0 if not finished; +1 if win; -1 if lose

21

The grid world: Learning to Navigate

* The grid world

0
0 100 (7
> —

< G
0
10 119 1
ol ol | 100
0 0
> S
< <«——
0 0

* What do you think is the optimal behavior that maximizes reward?

The structure of returns

e Define return at time step t:

Ge =T¢ + YTegq + VoTegn + -

* The goal of RL: find a policy that maximizes its return at the start:

E lro+yr +y2r+ -] =E[Go]

* @, satisfies the following recurrence:
Ge=1e + Y141+ VTeg2 +) =1 +YGraq

Current return Immediate reward Future return

23

Value Function

e Prediction of future reward

* Used to evaluate goodness / badness of states given that the agent executes a
policy

VT(s) = E[ry + yrepq1 + V2rega + - | s¢ = s, 7]

* We explicitly notate that the value depends on the policy

24

Value function for a policy

* Important property (Bellman consistency equation):

VT (s) = R(S,n(s)) +y X P(s" | s,m(s))V™(s'"),Vs €S

Immediate reward Expected Future reward

where R(s,a) = E[r; | s; = s,a; = a

Justification:
Vi(s) =E
=

=[E

Gy | sg = 5,7] (definition)
19l so=s,m]+YE|G, |5y =s5,m] (return decomposition)

1o Sog =5, ag=m(s)]| +yE[V™(sy) | sg =5, ap=m(s)] (iterated expectation)

= R(s,n(s)) +y X P(s" | s,m(s)) V(s (algebra)

25

Optimal policy

 Fact: there is a policy " such that 7" = argmax V"™ (s) forall s
T

e t° is called the optimal policy

* V*(s) :=the value function achieved by the optimal policy — optimal value function

26

Value function for a policy

* Suppose 7 is shown by red arrows, y = 0.9

V™(s) values are shown in red optimal policy r*
0
90 100
73 81 100 0 0 100 D
0 = —
- T g? e G
0 0 0 0
110 110 0 110 119 1
ol] ol] 100 ol} ol | 100
ol . ol 0 0
— — — >
< <~ <« <~
66 0 90 0 100 81 0 90 0 100

 The Bellman consistency equation:

V™(s) = R(s,m(s)) +v - g P(s'ls,m(s)) V7 (s')

* stochastic policy: V™(s) = Yam(als) (R(s,a) +y - X P(s'ls,a) V7 (s"))

Policy evaluation

How to compute V™ given MDP M and policy m?

Recall Bellman consistency equation:
Vs: V(s) =), ,n(als) (R(S, a)+y- X P(s'|s,a) V”(S'))
= Xan(als)R(s,a) +v - Lo (Tam(als) P(s'ls,) V7 (s")
I

I
R™(s) M7 (s,s")
How many equations and how many unknowns?

In matrix form (denote by V™ = (V”(s))ses e RIS etc):
V®=R"+yM™V™ (recall the vector/matrix notation here)

A linear system! How to solve it?
e E.g. Gaussian elimination
« Alternatively, use fixed-point iteration: V¥*1 « R + yMTVk

28

Reading quiz

* Andrej Karpathy, “Deep Reinforcement learning: Pong from Pixels”

* What reinforcement learning (RL) method does the author use to train a game-playing agent?
What is its main idea?

score function f

p(X) after a parameter update

e Policy gradient method

* What are some differences between human and this RL agent in solving the game of Pong?
 Human can start playing reasonably without receiving rewards
 Human incorporate prior knowledge, e.g. intuitive physics

 What is the “credit assignment problem”? Why is this a challenge in RL?

upP U

DOWN P UpP DOWN DOWN DOWN UP
& @ 2 4 g

. >® @ @ @ WIN

32

Final Exam

Similar format to Midterm

Concepts before midterm may appear in final exam (revisit midterm review)

About 6+1 Questions
* 1 of these is only for CSC580 students
* No coding

Again, you can bring a letter-size paper with your notes therein

Nonlinear models

* Simple extension of linear models: linear models over nonlinear basis
functions

* Example question: given a set of nonlinear basis function ¢, compute the
feature-transformed data and the OLS model on it

o — 1 5 | wOLS _ (@T@)—lq)Ty

34

Nonlinear models

* Kernel methods: computationally efficient linear learning over nonlinear basis
functions

* Example question: given a function K, justify whether it is a kernel; if it is a
kernel provide its feature map (Recall HW3 P3)

* Example question: given a kernel function K, simulate kernelized
Perceptron’s run on a small dataset

Algorithm 30 KErNELIZEDPERCEPTRONTRAIN(D, Maxlter)

sk +—0,b+o0 {/ initialize coefficients and bias
= foriter = 1 ... Maxlter do

¥ for all {I”;y”) D do
v =Y () - plxn) f b {l compute activation for this example
&8

if y,a < o then

MKy = My + Yy K(xm; xn) // update coefficients
beb+y /l update bias
i end if
« end for
« end for

o return &, b

35

Unsupervised learning

* K-means clustering
* Example question: given a small dataset, simulate K-means clustering on it

* Principal component analysis (PCA) o
* Compute data mean & covariance matrix S
 Compute eigenvalues & eigenvectors of S ol

* What are the top k principal components of data”?
* How to compute explained variance?

* Example question: given a small 2-d dataset, compute the first and second
principal component of it (Recall HW3 P2)

Probabilistic modeling

* Bayesian networks p(x) = HP(% ‘ xPa(S))

sey
* Two important special cases

O ()

* What are the factorizations of the joint probabilities, respectively?

* Using the joint probability to recover any marginal / conditional probabilities
e Recall: HW3 P1

37

Probabilistic ML

* The recipe:
1. Model how the data is generated by probabilistic models,
but with parameters unspecified (modeling assumption /

generative story)

2. (Training) Learn the model parameter 6 -- default method?
3. (Test) I\/IakAe prediction / decision based on the learned
model P(z; 0)

* Example applications: waiting time prediction; spam
classification
* Example Question:

e Given a small dataset, compute the MLE for a Naive Bayes
model on it, and compute its Bayes classifier

training data

\‘6\0

probabilistic
model

N ——

38

Mixture models and EM

e Gaussian mixture models: definition
* How many parameters does it have?

 What is the MLE for Gaussian mixture model, if the cluster membership of all
examples are known?

* How does EM algorithm work for Gaussian mixture model?
e E-step: compute responsibility for all points [
* M-step: update model parameters

for

|

¥
«

I
-2 i) (c) 2

* Example question: given the responsibility of a small dataset, compute the
updated model parameters

39

Neural networks

* What function does a neural network represent?

2n = o(Wno(Wy_10(...)))

 How many parameters are there?

* How to train a neural network?
 Score the final layer output
* what are softmax layer and cross-entropy loss?
* Adjust the weights
* (stochastic) gradient descent

&
—

O ,

®9:00©

* What practical adjustments can we do for better
training neural networks?

40

: o[[TEfefalot--... s
Convolutional neural networks [T R [l
0[0)0|T7+0[01%_]0]1 ="11{2]3]4][1
ofof1]|1]ofO[0O.._ 1|0f1 1{3]|3[1]1
* The convolution operation I SR
* Example question: calculate the output of applying a 3x3 convolutional filter

to a 5x5 image with padding=1, stride=2

* The pooling operation

* Convolution on multichannel images

* Example question: given a 32x32x3 image, and a conv layer with

4 convolutional filters, each of spatial size 3x3: /

What is the output dimension after convolution? @E>@oooo

How many parameters does this layer have? /32

w|

Reinforcement learning

 Definition of an MDP (environment specification)
* What MDP does this graph represent?
* Policy evaluation: Bellman consistency equation

* Example Question: given this MDP, and discount
factor y = 0.9, and m as the uniform policy, write
down the Bellman consistency equation for V™ (s,)

42

Backup

Recap: Markov Decision Process (MDP)

atEA StES

Learning Agent Environment

Determing acton basaed on state

~and reward and next state

T: € [0,1] S¢y+1 € S
Goal:

Learn a policy m: S — A for choosing actions that
maximizes its expected cumulative (discounted) reward

E [ro+yr +y%r,+ - 1sg]where0 <y <1

for every possible starting state s,

> 5o

44

Summary: Specification of the environment
* Environment model MDP M = (S,A,R,P,y)
* R:a conditional probability table of current reward

given current state & current action
Sl Ao +5 0.7

Sl Ao 0 0.3

e P:aconditional probability table of next state

given current state & current action
Sl ap SO 0.7

S1 ag S, 0.2

Environment

45

Recap: Bellman consistency equation

* Value function of policy 7: measures r's quality

c VT(s) = E[r, + yTpqeq + Y?1pyp + | 5 = 5, 7]

73 o 81 100 (°
—a _% G .
“To 0 Suppose 7 is shown by red arrows, y = 0.9

0 0 '
il 1 ! V™(s) values are shown in red

ol ol | 100
0 0
—_—t ——
«—f— A

66 0 90 0 100

 The Bellman consistency equation:

V™(s) = R(s,m(s)) +v - g P(s'ls,m(s)) V7 (s')

* stochastic policy: V™(s) =), m(als) (R(S, a)+vy- s P(s'|s a) Vn(S'))

46

Planning in MDPs

Planning in MDPs

Given: full specification of M, (specifically R(s, a) and P(s’|s, a) are known)

Goal: find optimal policy m* of M

Recall: V*(s) is the value function of the optimal policy.

Claim: To act optimally, it suffices to find V*(s) for every state s

Why? Optimal action
n*(s) = arg max R(s,a) +y 2 P(S'|s,a) V*(s)
a

J
|

Expected return of: taking a now, and acting optimally subsequently

How to find V*(s)?

&

1

[]

48

Bellman optimality equation

* Fact: V*(s) = max V™(s) satisfies the following equation: 8
A

Max
V*(s) = max (R(S, a)+vy- Z P(s'ls, a) V*(S')> /i'\)\ (a

. o .
\)

|

Expected return of: taking a now, and acting optimally subsequently

\ J
|

Expected return of: acting optimally throughout

e This is known as the Bellman optimality equation

 |ssue: Bellman optimality equation is not a linear system

 However, V™ can be seen as a fixed point

49

Fixed point iteration

Solving equation f(x) = x — fixed points of f

Start from x4

Xy = f(x1), x3 = f(x2), ...

If the sequence {x,, };—, converges to some x~,
thenx™ = f(x™)

0.5

(;I?u, J?u) .7

&
4
s
I
-
s

f(x)= cos(x)

iterations = 12
- \l’“é\

1
-15

1.5 2

2.5

50

First Algorithm: Value iteration

Key idea: perform fixed point iteration on Bellman optimality equation

V*(s) = max (R(S, a)+vy- z P(s'|s,a) V*(S’)>

Initialize V (s) arbitrarily
While {VV (s) };cs is fairly different from the previous iteration’s {V(s) }ses:

* Foreachs € §: |
* V(s) «max R(s,a) +y g P(s'|s,a) - V(s') evﬁ'ﬁf”
a

7r Vv

. 1 1\ . . *
e Fact: With about O (— In —) iterations, I/ becomes e-close to V

1=y € improvement

* Other important algorithms: policy iteration

* Maintains estimates of =™ and V" simultaneously Tw > Uy 51

Summary

e Recall: so far, we are in the planning setting, where we are already given a model of the world: i.e.
know P(s'|s,a) and R(r | s,a)

* In real world applications, these models are rarely known ahead of time

* Need to learn to act optimally

e This is called the “learning in MDPs” problem

DO

G
|
I

100

52

Learning in MDPs

Learning in MDPs: basic setup

a, € A St € S
. . Learning Agent t
e Given: ming Agen Determine action based on state

* MDP M (unknown) : - ™
* The ability to interact with M for T steps g |§3
o 2
. f;: -"n-., 5 ___//

* Obtaining trajectory sy, ag, 1o, -, ST, A, I'T
Sand reward and nestt stabe

1t € [0,1] St+1 €S

Environment

e Goal:

* (Online learning) maximize cumulative reward [E| Z=0 vErel

e Useful in applications where every action taken has real-world consequences (e.g. medical
treatment)

 (Batch learning) output a policy 77 that competes with "

e Useful in applications where experimentations are affordable (e.g. laboratory rats,
simulators)

54

Learning in MDPs: A Taxonomy of Approaches

* Model-based RL:
Repeat:

RL Algorithms

{

Model-Free RL

* M « Estimate M based on data (e.g. by MLE) r—i
e Plan according to M polcy Ortimizator] | @-tesning |
Policy G dient.}<— - “_—b{ DQN
e Model-free RL: do not estimate M explicitly | #c/*< f_ 02 "|, _4._ el
. . PO :I —> QR-DQN
* Direct policy search ; sac <
TRFO }4— —’{ HER

e E.g. policy gradient (REINFORCE)
* Value-based methods
e E.g. Q-learning (this lecture)
* Actor-critic: combination of the two ideas

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

¥

Model-Based RL

—

1 3

Learn the Model

Given the Model

— World Models |—P AlphaZero

—> 24

— MBMF

™ MBVE

55

Unique challenges in MDP Learning: Exploration

* Learning agent’s data is induced by its own actions 0 | (D
P i T~ G
* How to collect useful data? Mo 0 ro T
. : | ol I
The exploration challenge ol o| ! ol 100
* One plausible idea: collect data that “covers” all states and actions
» e-greedy exploration: w.p. €, take actions uniformly at random
* € = 1: uniform exploration
e Caveat: uniform exploration may fail because of some hard-to-reach states
e E.g. RiverSwim [Strehl & Littman, 2008]
.4 06 (). 6 025). 0° 1.6 | (1.6 (.6
) — - : —— _\J‘i " ._\"] — | r=1

https://rlgammazero.github.io/docs/2020_AAAIl_tut_part0.pdf

56

Learning to act: Q-functions

* Issue of V™: only encodes the quality of states 8
* But we need to learn what actions are good /<$>\
* |s there a function that encodes the quality of actions as well? & 4 al

Action-value functions (Q-functions):
Q™(s,a) =E[Gy | sg =S,ap=a, m] =R(s,a) +y Z P(s'|s,a)V™(s")
s'es
The optimal Q function
Q*(s,a) =E|[Gy | sg =s,ap=a, "] = R(s,a) +vy Z P(s'|s,a)V*(s")
s'es

The optimal policy can be extracted from Q™:
n*(s) = argmax Q*(s, a)
a

57

Q-values

i

<J

o

0
of, 100 D
1 G
0
o 21O A
olv oly | 100
0 [
b a4
0 0

j —_—

IV

<

—_ ®

100

r(s, a) (immediate reward) values

90 100
D G
81 0
A 72 1) 8 i)
81 IV 90 I | 100
81 90
b g P
72 81

Q*(s,a) values

V*(s) values

58

Q-learning [Watkins’92]: motivation

* We do not know the state transition nor the reward function.

* Instead of learning these model parameters, we directly attempt to estimate Q*

* Similarto V™, Q™ also satisfies a Bellman-optimality equation:

0*(s,a) = R(s,a) +v - ZP(S’ | S,a)n}lellx Q*(s',a")

Recall: Q*(s,a) = r(s,a) + ¥ Xgreg P(s'|s, @)V (s")

* We will use this to design our learning rule

59

AlgO r|th m-. Q‘lea N | ng (deterministic transitions/rewards)

Assume that we are in the tabular setting: S and A are both finite

Initialize: Q(s,a) = 0,Vs,a

Observe the initial state s

Repeat:
* Select an action a and execute it (e.g., e-greedy)
* Receive arewardr

* Observe a new state s’ .
“learning a guess based on another guess”

-- Bootstrap (perhaps the most important idea in RL)

Update: Q(s,a) < r +ymaxQ(s’,a’)
a

e 55’

Q*(s,a) = R(s,a) +y - zP(s’ | s,a) max Q*(s',a’)

60

Q-learning: update example

72
© <

>
63

100

|81

v

—)

0

N
i)
I

90
b

100

|81

9
<1

>

0

—>

0

r(s, a) (immediate reward) values

a v

right

Q(Slﬁarighz‘) I+ }/maxa' Q(SZ:'a')
« 0+0.9max {63 81,100}
<~ 90

61

Q-learning for stochastic transitions/rewards

Our update equation is problematic: Q(s,a) «r+vy max Q(s',a")
a

dao aj as

For stochastic worlds:
* Fix s, a, (next state, reward) s’, r seen is stochastic
* Evenif Q = Q" in the previous iteration, Q (s, a) will deviate from Q*(s, a) after the update
* This results in Q(s, a) not converging

) ry

How to fix this? Recall:

Q*(s,a) = R(s,a) +y - zP(S' | s,a) max Q*(s',a")

A probabilistic weighted average -- an expectation

We can use the idea of stochastic approximation to approximate expectations

So > 5y > §; —>

62

Stochastic approximation

Given a stream of data points X¢, ..., X;; ~ N(u, 1)

How to estimate i in an anytime manner?

|dea 1: at time step n, output estimate ji,, = X,

Can we do better?

ldea 2: at time step n, output estimate ji,, = %(Xl + -+ X))

This is equivalent to fi,, = (1 — a,,)ll,,—1 + a,X,,, where a,, = %

[I
| I_I_I
Old estimate New data
(conservativeness) (correctiveness)

63

Q-learning for Stochastic Transitions / Rewards

* |nitialize: Q(s,a) = 0,Vs,a
e Observe the initial state s

* Repeat
 Take an action a

Q*(s,a) = R(s,a) +y - zP(s’ | S,a)rrzgx Q*(s', a’

* e.g., e-greedy (taking argmax,Q(s,a) w.p. 1 — €)

Receive the reward r
Observe the new state s’

e s 5

a is a hyperparameter! (next slide)

Update: Q(s,a) « (1 —a)Q(s,a) + a (r +ymax Q(s’, a’))

64

The choice of

* Q(s,a) « (1 -—a)Q(s,a) + @ (r +y max Q(s’,a’))

1
1 + #times(s,a)’

* For example, a =

* Q: Why is this a reasonable choice?

65

Discussion

* [Watkins and Dayan’92]: Q-learning will converge to the optimal Q function (under certain niceness
assumptions on the MDP, exploration policy, and step size scheme)

* |n practice, it can take a lot of iterations!

66

Challenge of Q-learning: large state spaces

* Q-learning requires us to maintain a huge table, which is clearly infeasible with large state spaces

states
So Y Ay} ce . S

ap

a;

.u.ﬁ

actions % |... Q(s», as)

Aay

e Most states won’t be visited even once!

* How to design a Q-learning-style algorithm that can handle large state spaces?

* |dea: use a neural network to represent Q Os. ap)
and learn the weights of the network (fitted-Q learning) s, @)
(s, ar)

https://www.microsoft.com/en-us/research/uploads/prod/2018/09/Reinforcement-Learning-with-Rich-Observations-SLIDES.pdf

Fitted Q-learning example: Atari games [Mnih et al, 2015]

* The learned Q functions are sensible

https://www.nature.com/articles/nature14236 68

s

o
3]

Action-Values (Q)
O
(6] O

1
—

Fitted Q-learning example: Atari games [Mnih et al, 2015]

* Q-network’s last hidden layer extracts useful representations

* Consequently Q-network provides Q-value estimates that generalize across states

https://www.nature.com/articles/nature14236 69

Summary

MDPs: Reward driven philosophy
Policy evaluation: Bellman consistency equations; fixed point iteration
Planning in MDPs: value iteration; policy iteration

Learning in MDPs: Q-learning; function approximation

70

Backup 2

Backup

Source: David Silver

Unsupervised
Learning

Supervised
Learning

Machine
Learning

Reinforcement
Learning

73

Markov Decision Process (MDP)

agent

state/ /Irewa rd \l action

environment

Environment model M

Set of states S ro r r>
Set of actions 4
at each time t, agent observes state s; € S, then chooses actiona; € A

then receives a reward 1; and moves to state s;.1; repeat.

74

Policy iteration: an interesting observation

Suppose we perform fixed-point iteration for evaluating V*, withm(a | s) = 1/4,Vs,a
_— what you get if you apply the policy improvement step

[

Uk for the
random policy

0.0 00| 0oy 0.0

greedy policy

w.rt. Vg

U0 Oo0| 000 000

0.0 Ou0] 0o 00

0.0 00| DU 0.0

3
—_—

(o] - 10 -1 -1.0

.0 1.0 A 1.0

I
I

1.0 -1.0]-1.01-1.0
I

I S]

0.0]-1.7]-2.00-2.0

-2.0{-2.0{-2.00-1.7

-2.00-2.0[-1.7] 0.0

L__T..T

LT

random k=3
policy
k=10
k: o

0.0

-2.4

-2.9

-3.0

2.4

-2.9

-3.0

-2.9

-2.9

-3.0

-2.9

-2.4

-3.0

-2.9

-2.4

0.0

0.0

-6.1

-8.4

-9.0

-6.1

-7.7

-8.4

-8.4

-8.4

-8.4

-1.7

-6.1

-9.0

8.4

-6.1

0.0

0.0

-14.

-20.

-22.

-14.

-18.

-20.

-20.

-20.

-20.

-18.

-14.

-22.

-20.

-14.

0.0

— |« 9
e a |
"5 el
L =l -
— |« |9
T‘J‘_ll
"B el
Lyl = -
— < |9
" e
"B el
L S| -

optimal
policy

75

Unique challenges in RL Il: Exploration

Learning agent’s data is induced by its own actions

How to collect useful data?

* The exploration challenge f
< A4
]
* Rough intuition: collect data that “covers” all states and actions
e Uniform exploration: take actions uniformly at random
e Caveat: uniform exploration may fail because of some hard-to-reach states
e E.g. RiverSwim [Strehl & Littman, 2008]
0.4 06 (.6 1.35 I:__.Ii .35 IZ'I_‘.i 0.35 I}__\Ii 0.3 II__.Ii
) ’]JJ [J'__}L_ () .«l-l-'lT'-m\i/) — u\f’) - ---K\f’) r=1
x""_'l‘\’./ S : /1_" L 1'_;‘\) _ Y U /3_"
[1) 1 ;sxﬂ "1/-1 I f/ 5 ﬁ' Ei\:
RN . S) RNILS) RN S P S
T:[}ﬂl !\ n] 1 l] 1

https://rlgammazero.github.io/docs/2020_AAAIl_tut_part0.pdf

76

Unique challenges in RL II: Exploration (cont’d)

* Extra challenge in the online learning setting - f
* Need to take good actions that yield high rewards 7 i

* Unobserved
responses

* Balance exploration vs. exploitation
* Not anissue in the batch learning setting

Observed
decisions and
response

Q Unobserved
responses

Mechanical
ventilation? Sedation? Vasopressors?

Time

* Popularidea:

* e-greedy: w.p. 1 — €, choose action that is believed to be optimal based on the information
collected so far; otherwise, choose actions uniformly at random.

* Again, e-greedy may fail in some hard MDP environments

https://www.nature.com/articles/s41591-018-0310-5 77

Monte Carlo Reinforcement Learning

* MC methods learn directly from episodes of experience

* MC is model-free: no knowledge of MDP transitions / rewards
 MC learns from complete episodes (no bootstrapping)

* MC uses the simplest idea: value = mean return

e Caveat: Can only apply MC to episodic MDPs (must terminate)

Credit: David Silver

78

Monte Carlo Reinforcement Learning

Goal: learn V™ from episodes of experience under policy m:
Sl’Al' Rz, ,Sk ~ TT

Recall that return is total discounted reward:

Gt = Ry + YRey1 +V?Reyz + -

And recall that the value function is expected return:

VT(s) = Ex|G¢ | St = 5]
MC policy evaluation uses empirical mean return instead of expected return

Credit: David Silver 79

First-Visit MC Policy Evaluation

* To evaluate s

* The first time-step t that s is visited in an episode
* Increment counter N(s) « N(s) + 1

* Increment total return S(s) « S(s) + G,

e Estimate value by mean return V(s) « S(s)/N(s)

* By the law of large numbers V(s) - V™ as N(s) — o

Credit: David Silver

80

Every-Visit MC Policy Evaluation

* To evaluate s

* Every time-step t that s is visited in an episode

* Increment counter N(s) « N(s) + 1

* Increment total return S(s) « S(s) + G,

e Estimate value by mean return V(s) « S(s)/N(s)
* Again, V(s) > V™ as N(s) »

Credit: David Silver

81

Example: Blackjack

Objective: Have your card sum be greater than the dealer’s without
going over 21

States (200 of them)
e Current sum (12-21)
e Dealer’s showing card (Ace-10)
* Do | have a useable ace?

Reward +1 for winning, O for draw, -1 for losing

Actions Hold (stop receiving cards), Hit (receive another card)

Credit: David Silver 82

Example: Blackjack

After 10,000 episodes

Usable
ace

No
usable
ace

Policy Hold if sum at least 20, otherwise hit

Credit: David Silver

After 500,000 episodes

83

Q function approximation

* We can use some other function representation (e.g. a neural net) to compactly encode a substitute
for the big table.

* We've been thinking states as discrete (the set S), but in fact, they can be a feature vector!

Q(S, a])

(s, ay)

encoding of the state o

Q(S, ak)

each input unit can be a sensor value
(or more generally, a feature)

Q: why is this a good idea?

84

Why Q function approximation?

* 1. memory issue

2.is able to generalize across states! may speed up the convergence.

Example: 100 binary features for states. 10 possible actions.
Q table size = 10 x 2190 entries

NN with 100 hidden units:
e 100 x 100 + 100 x 10 = 11k weights (not counting bias for simplicity)

Q(S’ a])

Q(S’ a2)

O(s, ai)

85

Algorithm: fitted Q-learning

Repeat

observe the state s

compute Q(s, a) for each action a (forward pass on the NN)
select action a (e.g. use e-greedy) and execute it

observe the new state s’ and the reward r

compute Q(s’,a") for each action a’ (forward pass on the NN)

update the NN with the instance
e XS
ey (1-a)Q(s,a) +a (r +y -max Q(s’, a’)) (label for Q(s,a))
a

Calculate Q value you would have put into the Q-table and use it as the training label.
Use the squared loss and perform backpropagation!

86

Fitted Q-learning example: Atari games

 Human-level control through deep reinforcement learning (Mnih et al, 2013, 2015)

* Tested Fitted Q-learning on 49 Atari games

* Achieves >=75% of human professional players’ scores on 29 games

* Can significantly outperform human players in many games

https://arxiv.org/pdf/1312.5602.pdf
https://www.nature.com/articles/nature14236

87

Fitted Q-learning example: Atari games (cont’d)

Convolution Convolution Fully connected Fully connected
v v v v

* The neural network for fitting Q values
* Convolutional architecture to handle
states as images

e Learning curve: (Space Invaders, e-greedy with € = 0.05)

a 2,200,
o 2,000
S 1,800}
S 1,600}

0 20 40 60 80 100 120 140 160 180 200
Training epochs

88

Fitted Q-learning example: Atari games (cont’d)

* Q-network’s last hidden layer extracts useful representations

* Consequently Q-network provides Q-value estimates that generalize across states

89

Fitted Q-learning example: Atari games (cont’d)

* The learned Q functions are sensible

o
13 B

Action-Values (Q)
O
(6] O

1
—

90

Policy iteration: an interesting observation

Suppose we perform fixed-point iteration for estimating V*, withm(a | s) = 1/4,Vs,a

Vk+1 « RT +yM7'Evk

v for the greedy policy
random policy w.rt. U

L0 Ooo | 0] 0.

L0 00| 0o 00 ——
random

k=1 :
0.0| 00| 0.0] 0.0 _ policy

00 0| 0| .

0.0]-1.7(-2.00-2.0

-1.7]-2.0]-

ey
Il
[

-2.04-2.0]-

— |a— e

11

-2.01-2.0]-1.7] 0.0 * -

k=3
k=10
#:‘I

/ what you get if you apply the policy improvement step

0.0]-2.4/-28[-3.0 — = |4
2420|3020 Pl e |,
2al3n|-206|-24 L]
302924 00 Ll = =

n.0|-6.1|-8.4]-9.0 PR M
6.1]-7.7|-8.4]-8.4 Pl | |,
&.4|-8.4[-7.7]-6.1 PTG -,
-9.0)-8.4|-6.1{ 0.0 L = =

0.0|-14.|-20.]-22. — = |
14.|-18.|-20| -20. "Hle]
20.|-20]-18.]-14. ==
22.|-20.]-14.| 0.0 L o] —

Even though V* may be far from V7, the greedy policy of V¥ is close to that of V™

optimal
policy

91

Algorithm: Modified policy iteration

* From previous slide: inexact value functions are still useful!

e Start from an arbitrary policy T (e.g., assign actions randomly)

_ _ This is not a valid value function anymore (no
* Repeat the following (until V converges): corresponding 7 that achieves this value in general)

* [(Inexact) Policy evaluation] V < take k fixed-point iterations for computing V™ (so V = V™)

* [Policy improvement] Update the policy:
Foreverys €S, m(s) =argmaxR(s,a) +yX.esP(s'|s,a)V(s")
a

92

e Policy evaluation: just evaluates the value function for a given i
* closed form / fixed-point iteration

* Planning:
* Value iteration
* Policy iteration: policy evaluation + policy improvement

93

Unique challenges in RL I: Temporal Credit Assignment

Performance measure:
» focuses on the quality of a sequence of interdependent states / actions

Aim for maximization of long-term rewards @ @ Y

- Eg. ShortTerm ‘single Reward.
* Daily exercise: short term — long term ++ ® v 28 v

 Stay up all night playing video games: short term + long term --
* Chess tactics: sacrifice pieces

Need to answer questions like: “what is the key step that caused me to lose this game?” — temporal
credit assignment

94

Second Algorithm: Policy iteration

e The idea:

estimate optimal value VV* and optimal policy =™ simultaneously & iteratively

* Observe:
e ¥ is greedy wrt V7, i.e,,
n*(s) = arg max R(s,a) + V¥ Y5 P(s'|s,a) V*(s)
a

 I/* is the value function of T*

* Can we obtain a pair (1, V') that exhibit the above properties?

evaluation

Ve vy

m ~ greedy (V)

N
%

improvement

I-fU*

95

Second Algorithm: Policy iteration

Algorithm: evaluation

Vi vy

e Start from an arbitrary policy T (e.g., assign actions randomly)

* Repeat the following (until V converges)

N
N/

m ~ greedy (V)
* [Policy evaluation] IV < V™ (either solve the linear system or iterative method) mprovement
* [Policy improvement] Update the policy: m « greedy (V)
Foreverys € S, m(s) « argmaxr(s,a) + vy XqesP(s'|s,a)V™(s")
a
T o > Vi

. 1 1\. . *
e Fact: With about O (1Ty In Z) iterations, V becomes e-close to V

96

Discussion

* Q-learning will converge to the optimal Q function (under certain niceness assumptions on the MDP,
exploration policy, and step size scheme)

* |n practice, it takes a lot of iterations!

 Comparison: Model-based learning vs. Q-learning when choosing actions
* Model-based

* need to look ahead using some estimates of rewards and transition probabilities (Model Predictive
Control)

e Q-learning (model-free)
* just choose the action with the largest Q value

97

	Slide 1: CSC 480/580 Principles of Machine Learning 12 Reinforcement learning (RL)
	Slide 2: HW3: a few comments
	Slide 3: HW3: a few comments
	Slide 4: HW3: a few comments
	Slide 5: Reinforcement learning references
	Slide 6: Outline
	Slide 7
	Slide 8
	Slide 9: Reinforcement Learning (RL)
	Slide 10: Characteristics of RL
	Slide 11: Examples of RL
	Slide 12: Markov Decision Process (MDP)
	Slide 13: Example: Learning to Navigate in the grid world
	Slide 14: Markov Decision Process (MDP)
	Slide 15: Markov Decision Process (MDP)
	Slide 16: Markov Decision Process (MDP)
	Slide 17: Summary: Specification of the environment
	Slide 18: Discounted cumulative reward
	Slide 21: The intention behind the RL formulation
	Slide 22: The grid world: Learning to Navigate
	Slide 23: The structure of returns
	Slide 24: Value Function
	Slide 25: Value function for a policy
	Slide 26: Optimal policy
	Slide 27: Value function for a policy pi
	Slide 28: Policy evaluation
	Slide 32: Reading quiz
	Slide 33: Final Exam
	Slide 34: Nonlinear models
	Slide 35: Nonlinear models
	Slide 36: Unsupervised learning
	Slide 37: Probabilistic modeling
	Slide 38: Probabilistic ML
	Slide 39: Mixture models and EM
	Slide 40: Neural networks
	Slide 41: Convolutional neural networks
	Slide 42: Reinforcement learning
	Slide 43: Backup
	Slide 44: Recap: Markov Decision Process (MDP)
	Slide 45: Summary: Specification of the environment
	Slide 46: Recap: Bellman consistency equation
	Slide 47
	Slide 48: Planning in MDPs
	Slide 49: Bellman optimality equation
	Slide 50: Fixed point iteration
	Slide 51: First Algorithm: Value iteration
	Slide 52: Summary
	Slide 53
	Slide 54: Learning in MDPs: basic setup
	Slide 55: Learning in MDPs: A Taxonomy of Approaches
	Slide 56: Unique challenges in MDP Learning: Exploration
	Slide 57: Learning to act: Q-functions
	Slide 58: Q-values
	Slide 59: Q-learning [Watkins’92]: motivation
	Slide 60: Algorithm: Q-learning (deterministic transitions/rewards)
	Slide 61: Q-learning: update example
	Slide 62: Q-learning for stochastic transitions/rewards
	Slide 63: Stochastic approximation
	Slide 64: Q-learning for Stochastic Transitions / Rewards
	Slide 65: The choice of alpha
	Slide 66: Discussion
	Slide 67: Challenge of Q-learning: large state spaces
	Slide 68: Fitted Q-learning example: Atari games [Mnih et al, 2015]
	Slide 69: Fitted Q-learning example: Atari games [Mnih et al, 2015]
	Slide 70: Summary
	Slide 71: Backup 2
	Slide 72: Backup
	Slide 73
	Slide 74: Markov Decision Process (MDP)
	Slide 75: Policy iteration: an interesting observation
	Slide 76: Unique challenges in RL II: Exploration
	Slide 77: Unique challenges in RL II: Exploration (cont’d)
	Slide 78: Monte Carlo Reinforcement Learning
	Slide 79: Monte Carlo Reinforcement Learning
	Slide 80: First-Visit MC Policy Evaluation
	Slide 81: Every-Visit MC Policy Evaluation
	Slide 82: Example: Blackjack
	Slide 83: Example: Blackjack
	Slide 84: Q function approximation
	Slide 85: Why Q function approximation?
	Slide 86: Algorithm: fitted Q-learning
	Slide 87: Fitted Q-learning example: Atari games
	Slide 88: Fitted Q-learning example: Atari games (cont’d)
	Slide 89: Fitted Q-learning example: Atari games (cont’d)
	Slide 90: Fitted Q-learning example: Atari games (cont’d)
	Slide 91: Policy iteration: an interesting observation
	Slide 92: Algorithm: Modified policy iteration
	Slide 93
	Slide 94: Unique challenges in RL I: Temporal Credit Assignment
	Slide 95: Second Algorithm: Policy iteration
	Slide 96: Second Algorithm: Policy iteration
	Slide 97: Discussion

