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HW3: a few comments

• What factorization of P(E, B, A) does this graph correspond to?

• 𝑃(𝐸, 𝐵, 𝐴) = 𝑃(𝐸) 𝑃(𝐵) 𝑃(𝐴|𝐸, 𝐵)

• What does this equation mean, exactly?

• For every 𝑒, 𝑏, 𝑎 ∈ {0,1},
𝑃(𝐸 = 𝑒, 𝐵 = 𝑏, 𝐴 = 𝑎) = 𝑃(𝐸 = 𝑒) 𝑃(𝐵 = 𝑏) 𝑃(𝐴 = 𝑎|𝐸 = 𝑒, 𝐵 = 𝑏)

(in total, 8 equalities)

• Is 𝐸 ⊥ 𝐵 ∣ 𝐴 ?

• In fact, 𝐸 and 𝐵 are negatively correlated given 𝐴 = 1
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HW3: a few comments

• P3

• A possible answer: 

• It is not a kernel, because we can find x, z such that 𝐾 𝑥, 𝑧 < 0 

• What is the problem with this answer?

• Kernel functions do allow 𝐾 𝑥, 𝑧 < 0!

• Kernel functions don’t allow 𝐾 𝑥, 𝑥 < 0 though
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HW3: a few comments

• P3

• A possible answer: 

• It is a kernel, because it satisfies positivity (𝐾 𝑥, 𝑥 ≥ 0 for all 𝑥) and symmetry (𝐾 𝑥, 𝑧 =
𝐾(𝑧, 𝑥) for all 𝑥, 𝑧)

• What is the problem with this answer?

• Positivity and symmetry are only necessary condition for a function to be a kernel, but not 
sufficient!

• See a counterexample 𝐾 𝑥, 𝑧 = max(𝑥, 𝑧) in our lecture
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Reinforcement learning references

• ‘’Reinforcement learning’’ book by Sutton & Barto (available online)

• RL course by David Silver: 
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLzuuYNsE1EZAXYR4FJ75jcJseBmo4KQ9-

• RL MOOC by Martha White and Adam White @UAlberta:  
https://www.coursera.org/specializations/reinforcement-learning 
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https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLzuuYNsE1EZAXYR4FJ75jcJseBmo4KQ9-
https://www.coursera.org/specializations/reinforcement-learning


Outline

• Background / Markov Decision Processes (MDPs)

• Planning in MDPs

• Reinforcement Learning in MDPs
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Background / Markov Decision Processes
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Source: David Silver



Reinforcement Learning (RL)

• Applications: 

9
Akshay Krishnamurthy & Wen Sun, 
https://rltheorybook.github.io/colt21_part1.pdf



Characteristics of RL

How does RL differ from other ML frameworks?

• There is no supervisor, only a reward signal (evaluative vs. instructive feedback)

• Feedback is not instantaneous (delayed consequences)

• Data is not i.i.d. (it is sequential, time matters)

• The agent’s actions affect subsequent data it receives
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Source: David Silver



Examples of RL

• Fly stunt maneuvers in a helicopter (reward: not crashing)

• Manage an investment portfolio (reward: $)

• Play many different video games (reward: score)

• Make a humanoid robot walk (reward: distance traveled)

• Defeat world champion in Backgammon (reward: win/lose)

• Defeat world champion in Go! (reward: win/lose)
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https://www.youtube.com/watch?v=0JL04JJjocc
https://www.youtube.com/watch?v=TmPfTpjtdgg
https://www.youtube.com/watch?v=gn4nRCC9TwQ


Markov Decision Process (MDP)

• Environment model ℳ

• Set of states 𝑆

• Set of actions 𝐴
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𝑠𝑡 ∈ 𝑆𝑎𝑡 ∈ 𝐴

𝑟𝑡 ∈ [0,1] 𝑠𝑡+1 ∈ 𝑆

https://rltheorybook.github.io/colt21_part1.pdf



Example: Learning to Navigate in the grid world

• State s: the location of the agent

• Each arrow represents an action 𝑎 and the associated number represents deterministic reward 𝑟(𝑠, 𝑎)

• How does the next state and current state relate to each other?
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Markov Decision Process (MDP)

Markov assumption:
𝑃(𝑟𝑡|𝑠𝑡, 𝑎𝑡 , 𝑠𝑡−1, 𝑎𝑡−1, … ) = 𝑃(𝑟𝑡|𝑠𝑡, 𝑎𝑡)

𝑃 𝑠𝑡+1 𝑠𝑡, 𝑎𝑡 , 𝑠𝑡−1, 𝑎𝑡−1, … ) = 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)
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These are unknown to the learner!

i.e. the future is independent of the past, 
given the present

𝑠𝑡 ∈ 𝑆𝑎𝑡 ∈ 𝐴

𝑟𝑡 ∈ [0,1] 𝑠𝑡+1 ∈ 𝑆



Markov Decision Process (MDP)

• A policy is the agent’s behavior

• It is a mapping from state to action, e.g.

• Deterministic policy: 𝑎 = 𝜋(𝑠)

• Stochastic policy: 𝜋 𝑎 𝑠 = 𝑃(𝐴𝑡 = 𝑎 ∣ 𝑆𝑡 = 𝑠)

• A policy, when interacting with MDP, generates a random trajectory 𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, … 15

𝑠𝑡 ∈ 𝑆𝑎𝑡 ∈ 𝐴

𝑟𝑡 ∈ [0,1] 𝑠𝑡+1 ∈ 𝑆



Markov Decision Process (MDP)
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Goal: 
Learn a policy 𝜋: 𝑆 → 𝐴  for choosing actions that 
maximizes its expected cumulative (discounted) reward

   𝔼𝜋[𝑟0 + 𝛾 𝑟1 + 𝛾2𝑟2 + ⋯ ∣ 𝑠0] where 0 ≤ 𝛾 < 1

for every possible starting state 𝑠0

𝑠𝑡 ∈ 𝑆𝑎𝑡 ∈ 𝐴

𝑟𝑡 ∈ [0,1] 𝑠𝑡+1 ∈ 𝑆



Summary: Specification of the environment
• Environment model MDP ℳ = (𝑆, 𝐴, 𝑅, 𝑃, 𝛾)

• 𝑅: a conditional probability table of current reward 

given current state & current action

• 𝑃: a conditional probability table of next state 

given current state & current action 
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State s Action a Next state s’ 𝑃(𝑠′ ∣ 𝑠, 𝑎)

𝑆1 𝑎0 𝑆0 0.7

𝑆1 𝑎0 𝑆2 0.2

…

State s Action a Reward r 𝑅(𝑟 ∣ 𝑠, 𝑎)

𝑆1 𝑎0 +5 0.7

𝑆1 𝑎0 0 0.3

…



Discounted cumulative reward

• 𝑅0 = 𝑟0 + 𝛾 𝑟1 + 𝛾2𝑟2 + ⋯ , 0 ≤ 𝛾 < 1

• Discount: treating current reward as more worthy 

   than future rewards

• Larger 𝛾 ⇒ focus more on longer term future

• Boundedness property:

   0 ≤ 𝑅0 ≤ 1 + 𝛾 + 𝛾2 + ⋯ ≤
1

1−𝛾

• 𝛾 = 1: 𝑅0 may diverge to +∞

• Maximize long-term average reward  
1

𝑇
σ𝑡=1

𝑇 𝑟𝑡 
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The intention behind the RL formulation

• Note that the formulation is reward-driven.

• Example: Robot learning: move a dish from one place to another

• We can assign reward +10 when it accomplishes the task

• We can also assign reward +1 when it picks up the dish successfully

The Reward Hypothesis:
All goals can be described by the maximization of expected cumulative reward.
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(from David Silver’s lecture)

Goal Reward

Walk Forward displacement

Escape maze -1 if not out yet; 0 if out

Robots for recycling soda cans +1 if a new can collected; -10 if run into things;
0 otherwise.

Win chess 0 if not finished; +1 if win; -1 if lose



The grid world: Learning to Navigate

• The grid world

• What do you think is the optimal behavior that maximizes reward?
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The structure of returns

• Define return at time step 𝑡: 

    𝐺𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯  

• The goal of RL: find a policy 𝜋 that maximizes its return at the start:

     𝔼𝜋 𝑟0 + 𝛾 𝑟1 + 𝛾2𝑟2 + ⋯ = 𝔼𝜋 𝐺0

• 𝐺𝑡 satisfies the following recurrence:
𝐺𝑡 = 𝑟𝑡 + 𝛾 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + ⋯ = 𝑟𝑡 + 𝛾𝐺𝑡+1
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Current return Immediate reward Future return



Value Function
• Prediction of future reward

• Used to evaluate goodness / badness of states given that the agent executes a 
policy 𝜋

𝑉𝜋 𝑠 = 𝔼 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯ 𝑠𝑡 = 𝑠, 𝜋

• We explicitly notate that the value depends on the policy

24



Value function for a policy

• Important property (Bellman consistency equation): 

   𝑉𝜋 𝑠  = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝜋 𝑠 𝑉𝜋 𝑠′ , ∀𝑠 ∈ 𝑆

   where 𝑅 𝑠, 𝑎 = 𝔼[𝑟𝑡 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

Justification: 

    𝑉𝜋 𝑠 = 𝔼 𝐺0 𝑠0 = 𝑠, 𝜋                                                                                                          (definition)

                = 𝔼 𝑟0 𝑠0 = 𝑠, 𝜋 + 𝛾𝔼 𝐺1 𝑠0 = 𝑠, 𝜋                                             (return decomposition)

                = 𝔼 𝑟0 𝑠0 = 𝑠, 𝑎0 = 𝜋(𝑠) + 𝛾𝔼 𝑉𝜋(𝑠1) 𝑠0 = 𝑠, 𝑎0 = 𝜋(𝑠)     (iterated expectation)

                = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝜋 𝑠 𝑉𝜋(𝑠′)                                                                (algebra)
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Immediate reward Expected Future reward



Optimal policy

• Fact: there is a policy 𝜋∗ such that 𝜋∗ = arg max
𝜋

𝑉𝜋(𝑠)  for all 𝑠

• 𝜋∗ is called the optimal policy

• 𝑉∗ 𝑠  := the value function achieved by the optimal policy – optimal value function
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Value function for a policy 𝜋

• Suppose 𝜋 is shown by red arrows, 𝛾 = 0.9

• The Bellman consistency equation:
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𝑉𝜋 𝑠  values are shown in red

𝑉𝜋 𝑠 = 𝑅(𝑠, 𝜋(𝑠)) + 𝛾 ⋅ σ𝑠′ 𝑃 𝑠′ 𝑠, 𝜋(𝑠)  𝑉𝜋 𝑠′  

* stochastic policy:   𝑉𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑅 𝑠, 𝑎 + 𝛾 ⋅ σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎  𝑉𝜋 𝑠′

optimal policy 𝜋∗



Policy evaluation

• How to compute 𝑉𝜋 given MDP ℳ and policy 𝜋?

• Recall Bellman consistency equation:

                 ∀𝑠:   𝑉𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑅 𝑠, 𝑎 + 𝛾 ⋅ σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎  𝑉𝜋 𝑠′

                                       = σ𝑎 𝜋 𝑎 𝑠 𝑅 𝑠, 𝑎 + 𝛾 ⋅ σ𝑠′ σ𝑎 𝜋 𝑎 𝑠 𝑃 𝑠′ 𝑠, 𝑎  𝑉𝜋 𝑠′

• How many equations and how many unknowns?

• In matrix form (denote by 𝑉𝜋 = 𝑉𝜋 𝑠
𝑠∈𝑆

∈ ℝ 𝑆 , etc): 

𝑉𝜋 = 𝑅𝜋 + 𝛾𝑀𝜋𝑉𝜋

• A linear system! How to solve it?

• E.g. Gaussian elimination

• Alternatively, use fixed-point iteration: 𝑉𝑘+1 ← 𝑅𝜋 + 𝛾𝑀𝜋𝑉𝑘
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(recall the vector/matrix notation here)

𝑅𝜋(𝑠) 𝑀𝜋(𝑠, 𝑠′)



Reading quiz

• Andrej Karpathy, “Deep Reinforcement learning: Pong from Pixels”

• What reinforcement learning (RL) method does the author use to train a game-playing agent? 
What is its main idea?

• Policy gradient method

• What are some differences between human and this RL agent in solving the game of Pong?

• Human can start playing reasonably without receiving rewards

• Human incorporate prior knowledge, e.g. intuitive physics

• What is the “credit assignment problem”? Why is this a challenge in RL?
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Final Exam

• Similar format to Midterm

• Concepts before midterm may appear in final exam (revisit midterm review)

• About 6+1 Questions

• 1 of these is only for CSC580 students

• No coding

• Again, you can bring a letter-size paper with your notes therein



Nonlinear models

• Simple extension of linear models: linear models over nonlinear basis 
functions

• Example question: given a set of nonlinear basis function 𝜙, compute the 
feature-transformed data and the OLS model on it
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Nonlinear models

• Kernel methods: computationally efficient linear learning over nonlinear basis 
functions

• Example question: given a function K, justify whether it is a kernel; if it is a 
kernel provide its feature map (Recall HW3 P3)

• Example question: given a kernel function K, simulate kernelized 
Perceptron’s run on a small dataset

35

𝐾(𝑥𝑚, 𝑥𝑛) 



Unsupervised learning

• K-means clustering

• Example question: given a small dataset, simulate K-means clustering on it

• Principal component analysis (PCA)

• Compute data mean & covariance matrix S

• Compute eigenvalues & eigenvectors of S

• What are the top k principal components of data?

• How to compute explained variance?

• Example question: given a small 2-d dataset, compute the first and second 
principal component of it (Recall HW3 P2)
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Probabilistic modeling

• Bayesian networks

• Two important special cases

• What are the factorizations of the joint probabilities, respectively?

• Using the joint probability to recover any marginal / conditional probabilities

• Recall: HW3 P1
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Probabilistic ML

38

• The recipe:

1. Model how the data is generated by probabilistic models, 
but with parameters unspecified (modeling assumption / 
generative story)

2. (Training) Learn the model parameter መ𝜃 -- default method?

3. (Test) Make prediction / decision based on the learned 
model 𝑃(𝑧; መ𝜃) 

• Example applications: waiting time prediction; spam 
classification

• Example Question:

• Given a small dataset, compute the MLE for a Naïve Bayes 
model on it, and compute its Bayes classifier



Mixture models and EM

• Gaussian mixture models: definition 

• How many parameters does it have?

• What is the MLE for Gaussian mixture model, if the cluster membership of all 
examples are known?

• How does EM algorithm work for Gaussian mixture model?

• E-step: compute responsibility for all points

• M-step: update model parameters

• Example question: given the responsibility of a small dataset, compute the 
updated model parameters
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Neural networks

• What function does a neural network represent?

• How many parameters are there?

• How to train a neural network?

• Score the final layer output 
• what are softmax layer and cross-entropy loss?

• Adjust the weights 
• (stochastic) gradient descent 

• What practical adjustments can we do for better 
training neural networks? 40



Convolutional neural networks

• The convolution operation

• Example question: calculate the output of applying a 3x3 convolutional filter 
to a 5x5 image with padding=1, stride=2

• The pooling operation

• Convolution on multichannel images

• Example question: given a 32x32x3 image, and a conv layer with

   4 convolutional filters, each of spatial size 3x3:

 What is the output dimension after convolution?

 How many parameters does this layer have?
41



Reinforcement learning

• Definition of an MDP (environment specification)

• What MDP does this graph represent?

• Policy evaluation: Bellman consistency equation

• Example Question: given this MDP, and discount 
factor 𝛾 = 0.9, and 𝜋 as the uniform policy, write 
down the Bellman consistency equation for 𝑉𝜋(𝑠2)
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Backup

43



Recap: Markov Decision Process (MDP)
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Goal: 
Learn a policy 𝜋: 𝑆 → 𝐴  for choosing actions that 
maximizes its expected cumulative (discounted) reward

   𝔼𝜋[𝑟0 + 𝛾 𝑟1 + 𝛾2𝑟2 + ⋯ ∣ 𝑠0] where 0 ≤ 𝛾 < 1

for every possible starting state 𝑠0

𝑠𝑡 ∈ 𝑆𝑎𝑡 ∈ 𝐴

𝑟𝑡 ∈ [0,1] 𝑠𝑡+1 ∈ 𝑆



Summary: Specification of the environment
• Environment model MDP ℳ = (𝑆, 𝐴, 𝑅, 𝑃, 𝛾)

• 𝑅: a conditional probability table of current reward 

given current state & current action

• 𝑃: a conditional probability table of next state 

given current state & current action 
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State s Action a Next state s’ 𝑃(𝑠′ ∣ 𝑠, 𝑎)

𝑆1 𝑎0 𝑆0 0.7

𝑆1 𝑎0 𝑆2 0.2

…

State s Action a Reward r 𝑅(𝑟 ∣ 𝑠, 𝑎)

𝑆1 𝑎0 +5 0.7

𝑆1 𝑎0 0 0.3

…



Recap: Bellman consistency equation

• Value function of policy 𝜋: measures 𝜋′s quality

• 𝑉𝜋 𝑠 = 𝔼 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯ 𝑠𝑡 = 𝑠, 𝜋

• The Bellman consistency equation:
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𝑉𝜋 𝑠  values are shown in red

𝑉𝜋 𝑠 = 𝑅(𝑠, 𝜋(𝑠)) + 𝛾 ⋅ σ𝑠′ 𝑃 𝑠′ 𝑠, 𝜋(𝑠)  𝑉𝜋 𝑠′  

* stochastic policy:   𝑉𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑅 𝑠, 𝑎 + 𝛾 ⋅ σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎  𝑉𝜋 𝑠′

Suppose 𝜋 is shown by red arrows, 𝛾 = 0.9
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Planning in MDPs



• Given: full specification of ℳ, (specifically 𝑹(𝒔, 𝒂) and 𝑷(𝒔′|𝒔, 𝒂) are known)

• Goal: find optimal policy 𝜋∗ of ℳ

• Recall: 𝑉∗(𝑠) is the value function of the optimal policy.

• Claim: To act optimally, it suffices to find 𝑉∗ 𝑠  for every state s

• Why? Optimal action

                    𝜋∗ 𝑠 = arg max
𝑎∈𝐴

 𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝑆 𝑃 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠

• How to find 𝑉∗(𝑠)? 

Planning in MDPs

48

Expected return of: taking 𝑎 now, and acting optimally subsequently



Bellman optimality equation

• Fact: 𝑉∗ 𝑠 = max
𝜋

 𝑉𝜋(𝑠) satisfies the following equation:

𝑉∗ 𝑠 = max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 ⋅ 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎  𝑉∗ 𝑠′

• This is known as the Bellman optimality equation

• Issue: Bellman optimality equation is not a linear system

• However, 𝑉∗ can be seen as a fixed point

49

Expected return of: taking 𝑎 now, and acting optimally subsequently

Expected return of: acting optimally throughout



Fixed point iteration

• Solving equation 𝑓(𝑥) = 𝑥 – fixed points of 𝑓

• Start from 𝑥1

• 𝑥2 = 𝑓 𝑥1 , 𝑥3 = 𝑓 𝑥2 , …

• If the sequence 𝑥𝑛 𝑛=1
∞  converges to some 𝑥∗,

   then 𝑥∗ = 𝑓(𝑥∗)

50



First Algorithm: Value iteration

Key idea: perform fixed point iteration on Bellman optimality equation

Initialize 𝑉 𝑠  arbitrarily

While 𝑉 𝑠 𝑠∈𝑆 is fairly different from the previous iteration’s 𝑉 𝑠 𝑠∈𝑆:

• For each 𝑠 ∈ 𝑆:

• 𝑉 𝑠 ← max
𝑎

 𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝑆 𝑃 𝑠′ 𝑠, 𝑎 ⋅ 𝑉 𝑠′

• Fact: With about 𝑂
1

1−𝛾
ln

1

𝜖
 iterations, 𝑉 becomes 𝜖-close to 𝑉∗

• Other important algorithms: policy iteration 

• Maintains estimates of 𝜋∗ and 𝑉∗ simultaneously 51

𝑉∗ 𝑠 = max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 ⋅ 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎  𝑉∗ 𝑠′



Summary 

• Recall: so far, we are in the planning setting, where we are already given a model of the world: i.e. 
know 𝑃(𝑠′|𝑠, 𝑎) and 𝑅(𝑟 ∣ 𝑠, 𝑎)

• In real world applications, these models are rarely known ahead of time

• Need to learn to act optimally 

• This is called the “learning in MDPs” problem
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Learning in MDPs



Learning in MDPs: basic setup

• Given: 

• MDP ℳ (unknown)

• The ability to interact with ℳ for 𝑇 steps 

• Obtaining trajectory 𝑠0, 𝑎0, 𝑟0, … , 𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇

• Goal: 

• (Online learning) maximize cumulative reward 𝔼 σ𝑡=0
𝑇 𝛾𝑡 𝑟𝑡  

• Useful in applications where every action taken has real-world consequences (e.g. medical 
treatment)

• (Batch learning) output a policy ො𝜋 that competes with 𝜋∗

• Useful in applications where experimentations are affordable (e.g. laboratory rats, 
simulators)
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𝑠𝑡 ∈ 𝑆𝑎𝑡 ∈ 𝐴

𝑟𝑡 ∈ [0,1] 𝑠𝑡+1 ∈ 𝑆



Learning in MDPs: A Taxonomy of Approaches

• Model-based RL:

    Repeat:

• ොℳ ← Estimate ℳ based on data (e.g. by MLE)

• Plan according to ℳ

• Model-free RL: do not estimate ℳ explicitly

• Direct policy search

• E.g. policy gradient (REINFORCE)

• Value-based methods 

• E.g. Q-learning (this lecture)

• Actor-critic: combination of the two ideas

55https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html



Unique challenges in MDP Learning: Exploration

• Learning agent’s data is induced by its own actions

• How to collect useful data? 

• The exploration challenge

• One plausible idea: collect data that “covers” all states and actions

• 𝜖-greedy exploration: w.p. 𝜖, take actions uniformly at random 

• 𝜖 = 1: uniform exploration

• Caveat: uniform exploration may fail because of some hard-to-reach states

• E.g. RiverSwim [Strehl & Littman, 2008]

56https://rlgammazero.github.io/docs/2020_AAAI_tut_part0.pdf



Learning to act: Q-functions

• Issue of 𝑉𝜋: only encodes the quality of states

• But we need to learn what actions are good

• Is there a function that encodes the quality of actions as well?

Action-value functions (Q-functions):

𝑄𝜋 𝑠, 𝑎 = 𝔼 𝐺0 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋 = 𝑅 𝑠, 𝑎 + 𝛾 

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝜋 𝑠′

The optimal Q function

𝑄∗ 𝑠, 𝑎 = 𝔼 𝐺0 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋∗ = 𝑅 𝑠, 𝑎 + 𝛾 

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′

The optimal policy can be extracted from 𝑄∗:
𝜋∗ 𝑠 = arg max

𝑎
𝑄∗(𝑠, 𝑎)
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Q-values

58

𝑄∗(𝑠, 𝑎)



Q-learning [Watkins’92]: motivation

• We do not know the state transition nor the reward function.

• Instead of learning these model parameters, we directly attempt to estimate 𝑄∗

• Similar to 𝑉∗, 𝑄∗ also satisfies a Bellman-optimality equation:

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ⋅ 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄∗ 𝑠′, 𝑎′

• We will use this to design our learning rule

59

Recall: 𝑄∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝑆 𝑃 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′



Algorithm: Q-learning (deterministic transitions/rewards)

• Assume that we are in the tabular setting: 𝑆 and 𝐴 are both finite

• Initialize: 𝑄 𝑠, 𝑎 = 0, ∀𝑠, 𝑎

• Observe the initial state s

• Repeat:

• Select an action a and execute it (e.g., 𝜖-greedy)

• Receive a reward r

• Observe a new state s’

• Update: 𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′)

• s ← 𝑠′

60

“learning a guess based on another guess” 
-- Bootstrap (perhaps the most important idea in RL)

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ⋅ 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄∗ 𝑠′, 𝑎′



Q-learning: update example
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Q-learning for stochastic transitions/rewards

• Our update equation is problematic: 𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′)

• For stochastic worlds:

• Fix 𝑠, 𝑎, (next state, reward) 𝑠′, 𝑟 seen is stochastic

• Even if 𝑄 = 𝑄∗ in the previous iteration, 𝑄 𝑠, 𝑎  will deviate from 𝑄∗(𝑠, 𝑎) after the update

• This results in 𝑄 𝑠, 𝑎  not converging

• How to fix this? Recall: 

• We can use the idea of stochastic approximation to approximate expectations
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𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ⋅ 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄∗ 𝑠′, 𝑎′

A probabilistic weighted average -- an expectation



Stochastic approximation

• Given a stream of data points 𝑋1, … , 𝑋𝑛 ∼ 𝑁(𝜇, 1)

• How to estimate 𝜇 in an anytime manner?

• Idea 1: at time step 𝑛, output estimate ො𝜇𝑛 = 𝑋𝑛

• Can we do better?

• Idea 2: at time step 𝑛, output estimate ො𝜇𝑛 =
1

𝑛
𝑋1 + ⋯ + 𝑋𝑛

• This is equivalent to ො𝜇𝑛 = 1 − 𝛼𝑛 ො𝜇𝑛−1 + 𝛼𝑛𝑋𝑛, where 𝛼𝑛 =
1

𝑛
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New data
(correctiveness)

Old estimate
(conservativeness)



Q-learning for Stochastic Transitions / Rewards

• Initialize: 𝑄 𝑠, 𝑎 = 0, ∀𝑠, 𝑎

• Observe the initial state s

• Repeat

• Take an action 𝑎

• e.g., 𝜖-greedy (taking argmax𝑎𝑄(𝑠, 𝑎) w.p. 1 − 𝜖)

• Receive the reward r

• Observe the new state s’

• Update: 𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 max
𝑎′

𝑄 𝑠′, 𝑎′

• 𝑠 ← 𝑠′
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𝛼 is a hyperparameter! (next slide)

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ⋅ 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄∗ 𝑠′, 𝑎′



The choice of 𝛼 

• 𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 max
𝑎′

𝑄 𝑠′, 𝑎′

• For example, 𝛼 =
1

1 + #times(𝑠,𝑎)
. 

• Q: Why is this a reasonable choice?
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Discussion

• [Watkins and Dayan’92]: Q-learning will converge to the optimal Q function (under certain niceness 
assumptions on the MDP, exploration policy, and step size scheme)

• In practice, it can take a lot of iterations!
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Challenge of Q-learning: large state spaces

• Q-learning requires us to maintain a huge table, which is clearly infeasible with large state spaces

• Most states won’t be visited even once!

• How to design a Q-learning-style algorithm that can handle large state spaces?

• Idea: use a neural network to represent Q

 and learn the weights of the network (fitted-Q learning)

67https://www.microsoft.com/en-us/research/uploads/prod/2018/09/Reinforcement-Learning-with-Rich-Observations-SLIDES.pdf



Fitted Q-learning example: Atari games [Mnih et al, 2015]

• The learned Q functions are sensible

68https://www.nature.com/articles/nature14236



Fitted Q-learning example: Atari games [Mnih et al, 2015]

• Q-network’s last hidden layer extracts useful representations

• Consequently Q-network provides Q-value estimates that generalize across states

69https://www.nature.com/articles/nature14236



Summary

• MDPs: Reward driven philosophy

• Policy evaluation: Bellman consistency equations; fixed point iteration

• Planning in MDPs: value iteration; policy iteration

• Learning in MDPs: Q-learning; function approximation
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Backup 2
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Backup
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Source: David Silver
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Markov Decision Process (MDP)

• Environment model ℳ

• Set of states 𝑆

• Set of actions 𝐴

• at each time t, agent observes state 𝑠𝑡 ∈ 𝑆, then chooses action 𝑎𝑡 ∈ 𝐴

• then receives a reward 𝑟𝑡 and moves to state 𝑠𝑡+1; repeat.
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Policy iteration: an interesting observation

75

what you get if you apply the policy improvement step
Suppose we perform fixed-point iteration for evaluating 𝑉𝜋, with 𝜋 𝑎 𝑠 = 1/4, ∀𝑠, 𝑎 



Unique challenges in RL II: Exploration

• Learning agent’s data is induced by its own actions

• How to collect useful data? 

• The exploration challenge

• Rough intuition: collect data that “covers” all states and actions

• Uniform exploration: take actions uniformly at random 

• Caveat: uniform exploration may fail because of some hard-to-reach states

• E.g. RiverSwim [Strehl & Littman, 2008]

76https://rlgammazero.github.io/docs/2020_AAAI_tut_part0.pdf



Unique challenges in RL II: Exploration (cont’d)

• Extra challenge in the online learning setting 

• Need to take good actions that yield high rewards

• Balance exploration vs. exploitation

• Not an issue in the batch learning setting

• Popular idea: 

• 𝜖-greedy: w.p. 1 − 𝜖, choose action that is believed to be optimal based on the information 
collected so far; otherwise, choose actions uniformly at random. 

• Again, 𝜖-greedy may fail in some hard MDP environments

77https://www.nature.com/articles/s41591-018-0310-5



Monte Carlo Reinforcement Learning

• MC methods learn directly from episodes of experience

• MC is model-free: no knowledge of MDP transitions / rewards

• MC learns from complete episodes (no bootstrapping)

• MC uses the simplest idea: value = mean return

• Caveat: Can only apply MC to episodic MDPs (must terminate)

78Credit: David Silver



Monte Carlo Reinforcement Learning

Goal: learn 𝑉𝜋 from episodes of experience under policy 𝜋:

𝑆1, 𝐴1, 𝑅2, … , 𝑆𝑘 ∼ 𝜋

Recall that return is total discounted reward:

𝐺𝑡 = 𝑅𝑡 + 𝛾𝑅𝑡+1 + 𝛾2𝑅𝑡+2 + ⋯

And recall that the value function is expected return:

𝑉𝜋 𝑠 = 𝐸𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

MC policy evaluation uses empirical mean return instead of expected return

79Credit: David Silver



First-Visit MC Policy Evaluation

• To evaluate s

• The first time-step t that s is visited in an episode

• Increment counter 𝑁 𝑠 ← 𝑁 𝑠 + 1

• Increment total return 𝑆 𝑠 ← 𝑆 𝑠 + 𝐺𝑡

• Estimate value by mean return 𝑉 𝑠 ← 𝑆(𝑠)/𝑁 𝑠

• By the law of large numbers 𝑉 𝑠 → 𝑉𝜋 as 𝑁 𝑠 → ∞ 

80Credit: David Silver



Every-Visit MC Policy Evaluation

• To evaluate s

• Every time-step t that s is visited in an episode

• Increment counter 𝑁 𝑠 ← 𝑁 𝑠 + 1

• Increment total return 𝑆 𝑠 ← 𝑆 𝑠 + 𝐺𝑡

• Estimate value by mean return 𝑉 𝑠 ← 𝑆(𝑠)/𝑁 𝑠

• Again, 𝑉 𝑠 → 𝑉𝜋 as 𝑁 𝑠 → ∞ 

81Credit: David Silver



Example: Blackjack

Objective: Have your card sum be greater than the dealer’s without 
going over 21

States (200 of them)

• Current sum (12-21)

• Dealer’s showing card (Ace-10)

• Do I have a useable ace?

Reward +1 for winning, 0 for draw, -1 for losing

Actions Hold (stop receiving cards), Hit (receive another card)

82Credit: David Silver



Example: Blackjack

Policy Hold if sum at least 20, otherwise hit

83Credit: David Silver



Q function approximation

• We can use some other function representation (e.g. a neural net) to compactly encode a substitute 
for the big table.

• We’ve been thinking states as discrete (the set S), but in fact, they can be a feature vector!

84

encoding of the state 

each input unit can be a sensor value
(or more generally, a feature)

Q: why is this a good idea?



Why Q function approximation?

• 1. memory issue

• 2. is able to generalize across states! may speed up the convergence.

• Example: 100 binary features for states. 10 possible actions.

• Q table size = 10 x 2100  entries

• NN with 100 hidden units:

• 100 x 100 + 100 x 10 = 11k weights (not counting bias for simplicity)
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Algorithm: fitted Q-learning

Repeat

• observe the state s

• compute 𝑄(𝑠, 𝑎) for each action a (forward pass on the NN)

• select action a (e.g. use 𝜖-greedy) and execute it

• observe the new state s’ and the reward r 

• compute 𝑄(𝑠′, 𝑎′) for each action a’ (forward pass on the NN)

• update the NN with the instance

• 𝑥 ← 𝑠

• 𝑦 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 ⋅ max
𝑎′

 𝑄 𝑠′, 𝑎′
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Calculate Q value you would have put into the Q-table and use it as the training label.
Use the squared loss and perform backpropagation!

(label for Q(s,a))



Fitted Q-learning example: Atari games

• Human-level control through deep reinforcement learning (Mnih et al, 2013, 2015)

• Tested Fitted Q-learning on 49 Atari games

• Achieves >=75% of human professional players’ scores on 29 games

• Can significantly outperform human players in many games

87https://www.nature.com/articles/nature14236
https://arxiv.org/pdf/1312.5602.pdf



Fitted Q-learning example: Atari games (cont’d)

• The neural network for fitting Q values

• Convolutional architecture to handle

states as images 

• Learning curve: (Space Invaders, 𝜖-greedy with 𝜖 = 0.05)
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Fitted Q-learning example: Atari games (cont’d)

• Q-network’s last hidden layer extracts useful representations

• Consequently Q-network provides Q-value estimates that generalize across states

89



Fitted Q-learning example: Atari games (cont’d)

• The learned Q functions are sensible
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Policy iteration: an interesting observation

91

Suppose we perform fixed-point iteration for estimating 𝑉𝜋, with 𝜋 𝑎 𝑠 = 1/4, ∀𝑠, 𝑎 

what you get if you apply the policy improvement step

Even though 𝑉𝑘  may be far from 𝑉𝜋, the greedy policy of 𝑉𝑘  is close to that of 𝑉𝜋 

𝑉𝑘+1 ← 𝑅𝜋 + 𝛾𝑀𝜋𝑉𝑘



Algorithm: Modified policy iteration

• From previous slide: inexact value functions are still useful!

• Start from an arbitrary policy 𝜋  (e.g., assign actions randomly)

• Repeat the following (until 𝑉 converges):

• [(Inexact) Policy evaluation] 𝑉 ← take 𝑘 fixed-point iterations for computing 𝑉𝜋 (so 𝑉 ≈ 𝑉𝜋)

• [Policy improvement] Update the policy:

    For every s ∈ 𝑆,  𝜋 𝑠 = arg max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝑆 𝑃 𝑠′ 𝑠, 𝑎 𝑉 𝑠′
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This is not a valid value function anymore (no 
corresponding 𝜋 that achieves this value in general)



• Policy evaluation: just evaluates the value function for a given 𝜋

• closed form / fixed-point iteration

• Planning:

• Value iteration

• Policy iteration: policy evaluation + policy improvement
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Unique challenges in RL I: Temporal Credit Assignment

• Performance measure:

• focuses on the quality of a sequence of interdependent states / actions

• Aim for maximization of long-term rewards

• E.g. 

• Daily exercise: short term – long term ++

• Stay up all night playing video games: short term + long term --

• Chess tactics: sacrifice pieces 

• Need to answer questions like: “what is the key step that caused me to lose this game?” – temporal 
credit assignment

94



Second Algorithm: Policy iteration

• The idea: 

  estimate optimal value 𝑉∗ and optimal policy 𝜋∗ simultaneously & iteratively 

• Observe:

• 𝜋∗ is greedy wrt 𝑉∗, i.e., 

                              𝜋∗ 𝑠 = arg max
𝑎∈𝐴

 𝑅 𝑠, 𝑎 + 𝛾 σ𝑠∈𝑆 𝑃 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠

• 𝑉∗ is the value function of 𝜋∗

• Can we obtain a pair (𝜋, 𝑉) that exhibit the above properties?

95



Second Algorithm: Policy iteration

Algorithm: 

• Start from an arbitrary policy 𝜋  (e.g., assign actions randomly)

• Repeat the following (until 𝑉 converges)

• [Policy evaluation] 𝑉 ← 𝑉𝜋 (either solve the linear system or iterative method)

• [Policy improvement] Update the policy: 𝜋 ← greedy(𝑉)

    For every s ∈ 𝑆,  𝜋 𝑠 ← arg max
𝑎

𝑟 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝑆 𝑃 𝑠′ 𝑠, 𝑎 𝑉𝜋 𝑠′

• Fact: With about 𝑂
1

1−𝛾
ln

1

𝜖
 iterations, 𝑉 becomes 𝜖-close to 𝑉∗
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Discussion

• Q-learning will converge to the optimal Q function (under certain niceness assumptions on the MDP, 
exploration policy, and step size scheme)

• In practice, it takes a lot of iterations!

• Comparison: Model-based learning vs. Q-learning when choosing actions

• Model-based

• need to look ahead using some estimates of rewards and transition probabilities (Model Predictive 
Control)

• Q-learning (model-free)

• just choose the action with the largest Q value
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