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Basis Functions

Basis functions transform linear models into nonlinear ones…

…but it is often difficult to find a good basis transformation

Linear Regression
Classification

( Logistic Regression )



Learning Basis Functions

What if we could learn a basis function so that a simple linear 
model performs well…

…this is essentially what standard neural networks do…

Neural Net

Warped SpaceData Space

Ignore the circled points…I

reused these from the SVM slides



Neural Networks

• Flexible nonlinear transformations of data

• Resulting transformation is easily fit with a linear model

• Relatively efficient learning procedure scales to massive data

• Apply to many Machine Learning / Data Science problems
• Regression

• Classification

• Dimensionality reduction

• Function approximation

• Many application-specific problems



Neural Networks

Forms of NNs are used all over the place nowadays…

AI Chat Bots Self-Driving Cars

Machine Translation

Creepy Robots



Rosenblatt’s Perceptron

In 1957 Frank Rosenblatt constructed 
the first (single layer) neural network 

known as a “perceptron”

He demonstrated that it is capable of 
recognizing characters projected onto a 

20x20 “pixel” array of photosensors

Despite recent attention, 
neural networks are fairly old



Rosenblatt’s Perceptron

Perceptron

• In Rosenblatt’s perceptron, the inputs are tied directly to output

• “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics” (1962)

• Criticized by Marvin Minsky in book “Perceptrons” since can only learn linearly-separable functions

• The perceptron is just linear classification in disguise



Multilayer Perceptron

[ Source: http://neuralnetworksanddeeplearning.com ]

Input layer

perceptrons

Hidden layer

perceptrons

This is the quintessential Neural Network…

…also called Feed Forward Neural Net or Artificial Neural Net

Adding hidden layers 
allows NN to learn 
arbitrary functions

http://neuralnetworksanddeeplearning.com/


Modern Neural Networks

[ Source: Krizhevsky et al. (NIPS 2012) ]

Modern Deep Neural networks have many hidden layers

…and have many trillions of parameters to learn



Handwritten Digit Classification

Classifying handwritten digits is the “Hello World” of NNs

Modified National Institute of 
Standards and Technology 

(MNIST) database contains 60k 
training and 10k test images

Each character is centered 
in a 28x28=784 pixel 

grayscale image



Multilayer Perceptron for MNIST Classification[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each image pixel is a

number in [0,1] indicated

by highlighted color

https://www.youtube.com/watch?v=aircAruvnKk


Feedforward Procedure

Each node computes a 
weighted combination of nodes 

at the previous layer…

Then applies a nonlinear 
function to the result

Often, we also introduce

a constant bias parameter



Nonlinear Activation functions

We call this an activation function and typically write it in vector form,

An early choice was the logistic function,

Later found to lead to slow learning and the 
rectified linear unit (ReLU) become popular,



Multilayer Perceptron

Final layer is typically a linear 
model… each output node is 

computed by

Recall that for binary logistic 
regression with 2 classes,

Vector of activations from

previous layer



[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each parameter has some impact 

on the output…need to tweak 

(learn) all parameters 

simultaneously to improve 

prediction accuracy

https://www.youtube.com/watch?v=aircAruvnKk


Reading quiz

• https://cs231n.github.io/optimization-1/

• New concepts
• Optimization methods: 

• random search, 
• random local search, 
• Cf. gradient descent

• Gradient check: use slow & easy numerical gradient to check the 
correctness of implementation of fast & error prone analytical 
gradient

• Effect of step size

https://cs231n.github.io/optimization-1/


Training Multilayer Perceptron

For each training example, 

predict label and adjust 

weights…

• How to score final layer output?

• How to adjust weights?



Training Multilayer Perceptron

One way to score (square loss): based on difference between final layer 

and one-hot vector of true class… ℓ𝑖 𝜃 = σ𝑗 𝑓𝑗 𝑥𝑖; 𝜃 − 𝑦𝑗
2

Input

[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

https://www.youtube.com/watch?v=aircAruvnKk


Training Multilayer Perceptron: for classification

• For classification, it is most popular to use:
• A softmax layer as final output

  𝜎 Ԧ𝑓
𝑐

=
𝑒𝑓𝑐

σ𝑗=1
𝐶 𝑒

𝑓𝑗
, 𝑐 = 1, … , 𝐾

probability estimate of each class given example

• Cross-entropy loss for training

ℓ Ԧ𝑝, 𝑦 = log
1

𝑝𝑦

(if 𝑙 represents one-hot encoding of label, often 

written as σ𝑐 𝑙𝑐 log
1

𝑝𝑐
)

measures the “surprise” of label being 𝑦 based 
on current belief 

E.g. 𝑦 = 2, ℓ Ԧ𝑝, 𝑦 = log
1

0.90
 



Training Multilayer Perceptron

Our loss function for ith example is error in terms of weights / biases…

13,002 Parameters

in this network

…minimize loss over all training data…

This is a super high-dimensional optimization (13,002 
dimensions in this example)…how do we solve it?

Gradient descent!



Learning algorithm intuition

• Gradient descent: Move in direction of greatest local 
improvement (greedily)

• “Knob turning”

• ”knob” = weight of an edge

• If a neuron increases the probability of an incorrect prediction, its 
knobs will be turned down. 

• If a neuron increases the probability of a correct prediction, its knobs 
will be turned up. 
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Training Multilayer Perceptron

Need to find local / global optimal solution…

Convex Cost Function

Easy!

Non-convex Cost Function

Hard!

High-Dimensional Non-convex

Hard!

Actually, the situation is much worse, since the cost is super 
13,002(high)-dimensional…but we proceed as is…



Gradient descent (GD)

• For 𝑡 = 1, . . 𝑇: 𝜃𝑡+1 ← 𝜃𝑡 − 𝛼 ∇ℒ(𝜃𝑡)

• ∇ℒ 𝜃 =
𝜕ℒ

𝜕𝜃 1
, … ,

𝜕ℒ

𝜕𝜃 𝑑
 is the gradient of ℒ at point 𝜃

• Intuition: ∇ℒ 𝜃  / −∇ℒ 𝜃  points to the direction

In which ℒ increase / decreases the most
• GD provides local improvement on ℒ

• Special case (linear fn): ℒ 𝜃 = 𝑥𝑇𝜃



Gradient descent: example

• Example: ℒ 𝜃 =
1

2
(𝜃 1 2 + 4𝜃 2 2)

• ∇ℒ 𝜃 = (𝜃 1 , 4𝜃(2))

•
𝜃𝑡+1 1

𝜃𝑡+1 2
=

𝜃𝑡 1

𝜃𝑡 2
− 𝛼

𝜃𝑡 1

4𝜃𝑡 2
=

1 − 𝛼 𝜃𝑡 1

1 − 4𝛼 𝜃𝑡 2
= ⋯ =

1 − 𝛼 𝑡𝜃1 1

1 − 4𝛼 𝑡𝜃1 2

• When 𝛼 is small, 𝜃𝑡 → 0,0  - global minimizer of ℒ

https://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf

Vanishing as 𝒕 → ∞



GD: remarks

• Does not promise to converge to global optima

• In practice, people use it (or its variants) anyways and it 
performs well

• This is especially true in training neural networks



Stochastic gradient descent (SGD)

• Using GD to optimize training loss ℒ(𝜃) can be expensive!

• Full gradient ∇ℒ 𝜃 =
1

𝑚
σ𝑖=1

𝑚 ∇ℓ𝑖(𝜃), which takes O(𝑚) time to evaluate

• To reduce computational cost: use instead

                                    𝜃𝑡+1 ← 𝜃𝑡 − 𝛼𝑔𝑡, 

   where 𝑔𝑡 is an unbiased estimate of ∇ℒ(𝜃𝑡)

• One choice: 𝑔𝑡 = ∇ℓ𝑖𝑡
(𝜃𝑡), where 𝑖𝑡 ∼ Uniform({1, … , 𝑚})

• Only one gradient evaluation!

• Well-established convergence guarantees



Stochastic gradient descent (SGD)

• Claim: 𝑔𝑡 = ∇ℓ𝑖𝑡
(𝜃𝑡), where 𝑖𝑡 ∼ Uniform({1, … , 𝑚}) is an unbiased 

estimate of ∇ℒ(𝜃𝑡)

• Justification: 𝔼 𝑔𝑡 = σ𝑖=1
𝑚 ℙ(𝑖𝑡 = 𝑖) ∇ℓ𝑖(𝜃𝑡)  (defn of expectation)

                                =
1

𝑚
σ𝑖=1

𝑚 ∇ℓ𝑖(𝜃𝑡) (PMF of 𝑖𝑡)              

                                = ∇
1

𝑚
σ𝑖=1

𝑚 ℓ𝑖 𝜃𝑡           (linearity of derivative) 

                                = ∇ℒ(𝜃𝑡)

• Extension (Mini-batch SG): 𝑔𝑡 =
1

𝑘
σ𝑖∈𝑆𝑡

∇ℓ𝑖(𝜃𝑡) (𝑆𝑡 is a random 

size-𝑘 subset of {1, … , 𝑚}) is also an unbiased estimate
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Deep learning, a field of machine learning

Dog 90%

Mop 10%

Learning algorithm
(backpropagation)
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Deep learning with backpropagation
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Deep learning with backpropagation
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Deep learning with backpropagation
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O ops!

Deep learning with backpropagation
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Decrease signal on ”synapses” 
that fired incorrectly!

Deep learning with backpropagation
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Increase signal on ”synapses” 
that did not fire sufficiently!

Deep learning with backpropagation
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Collection of all 

weights and biases in 

the network
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One training example
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Partial derivative of the cost 

function C for each 

parameter (weight or bias) in 

the network
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Learning rate, which 

is a hyper parameter



Computing the Derivative

So we need to compute derivatives of a super complicated 
function…

• Tells us how much to turn the “tuning knob” (i.e. weight)

• But how do we compute derivatives for edge weights not directly 
connected to the output layer?

• Key technique: Backpropagation



Backpropagation
[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Activation at final layer involves 
weighted combination of 

activations at previous layer…

Which involves a weighted 
combination of the layer before 

it…

And so on…

https://www.youtube.com/watch?v=aircAruvnKk


Key conceptual tool: Computation graph

• A DAG that describes the order of computation in a general 
computational process

• Nodes: variables

• Edges: dependency of the variables

• 𝑓1 = 𝐹1(𝑊1, 𝑥),… , 𝑓𝑛 = 𝐹𝑛 𝑊𝑛, 𝑓𝑛−1

• Has more general application beyond training neural networks
• Differentiable physics simulation engine (Hu et al 2020)

• Differentiable ray-tracing (e.g. Yang et al 2022)

• ICML workshops on “differentiable almost everything”

   https://differentiable.xyz/
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Key tool: Computation graph

• Sometimes useful to highlight the operation that computes 
each variable as well

• E.g. 𝑞 = 𝐹𝑞 𝑥, 𝑦 = 𝑥 + 𝑦; 𝑓 = 𝐹𝑓 𝑞, 𝑧 = 𝑞 ⋅ 𝑧

• Backpropagation is the procedure of repeatedly applying the 
derivative chain rule to compute the full derivative



Chain rule in computation graphs: an example

• 𝑞 = 𝐹1 𝑥, 𝑦 = 𝑥 + 𝑦; 𝑓 = 𝐹2 𝑞, 𝑧 = 𝑞 ⋅ 𝑧
• Representing function 𝐹 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

• How to calculate ∇𝐹 =
𝜕𝑓

𝜕𝑥
,

𝜕𝑓

𝜕𝑦
,

𝜕𝑓

𝜕𝑧
?

• Interpretation of  
𝜕𝑣

𝜕𝑢
: if node 𝑢 is changed by 1 unit independently, how much 

does 𝑣 change?

• Using reverse topological order, go over all variables in the graph

•
𝜕𝑓

𝜕𝑞
= −4,  

𝜕𝑓

𝜕𝑧
= 3

•
𝜕𝑓

𝜕𝑥
=

𝜕𝑓

𝜕𝑞
⋅

𝜕𝑞

𝜕𝑥
= −4

•
𝜕𝑓

𝜕𝑦
=

𝜕𝑓

𝜕𝑞
⋅

𝜕𝑞

𝜕𝑦
= −4

45

figure from Stanford cs231n

green: node values 

    red: derivatives



Backpropagation

• In practice, neural network implementations use auto 
differentiation to compute the derivative on-the-fly

• Can do this efficiently on graphical processing units (GPUs) 
on extremely large training datasets

(Taken from Matus Telgarsky’s deep learning 

lecture: https://mjt.cs.illinois.edu/ml/lec8.pdf)



Vanishing / exploding gradient problems 

• Experimental observation: 
𝜕𝑓

𝜕𝑤𝑖
 for 𝑤𝑖 in closer-to-

input layers are more likely to be tiny (vanishing) / 
huge (exploding), leading to problematic updates

• We’ll see NN designs that mitigates this



Expressive power of neural networks

• (Cybenko, 1989; Hornik et al, 1989)

• Does this mean that there is no benefit in learning deeper 
networks? No..

• No (Eldan and Shamir, 2015; Telgarsky, 2016)

48



Regularization



Regularization

With four parameters I can fit an elephant.  With five I 
can make him wiggle his trunk.  - John von Neumann

Our example model has 13,002 
parameters…that’s a lot of elephants!  

Regularization is useful…

…numerous regularization schemes 
are used in training neural networks



L2 Regularization

Formalize the regularized cost function as,

Consider an L2 penalty,

Gradient (derivative) with respect to w is given by,

Take a single step in the direction of the gradient,



L2 Regularization (Weight Decay)

Written another way, a single gradient step is:

• Can see this is a modification to the learning rule (gradient descent)

• “Shrinks” the weight by constant factor on each step

• Then perform usual gradient step

Learning Rate

(how big of a step)

Regularization

Strength (Coefficient)



Regularization : Weight Decay



L1 Regularization

(Sub-)gradient given by,

• Very different effect from L2 weight decay

• Regularization contribution no longer scales linearly with each w

• Constant addition with sign equal to sign(w)

• Has a sparsity-inducing property (encourages some weights to be 0)



(Goodfellow 2016)

Parameter Tying / Sharing

• Introduces inductive bias 
• There should be dependencies among parameters

• Parameters should be close / similar

• Hard constraints force sets of parameters to be equal
• Known as parameter sharing

• Only subset of unique parameters needs to be stored in memory

• Example: convolutional neural network (we will discuss in detail)



(Goodfellow 2016)

Dataset Augmentation

• Train on more data (always more data)

• What if we don’t have more data? (Make up more)

• Easiest for classification

• Generate new (x,y) pairs by transforming an existing (x,y)

• Particularly effective for object recognition
• Translation

• Scaling

• Rotation

• …



(Goodfellow 2016)

Dataset Augmentation

Affine Distortion Noise Elastic Deformation

Horizontal flip Random Translation Hue Shift



(Goodfellow 2016)

Dataset Augmentation

• Need to avoid transformations that change class

• For example mirror “b” to produce “d”

• Rotation turns “6” into “9”

• Some transformations are not easy to perform, e.g. out-of-
plane rotation



(Goodfellow 2016)

Learning Curves – Early Stopping

Figure 7.3

Early stopping: terminate when validation set

performance stops improving



(Goodfellow 2016)



(Goodfellow 2016)

Early Stopping

• Think of it as efficient hyperparameter selection algorithm 
(hyperparameter = number of training steps)

• Requires almost no change to underlying training procedure
• Contrast with weight decay that requires hyperparameter tuning



Regularization

• L1+L2 (elastic net) regularization

• Data Augmentation Synthetically expand training data by 
applying random transformations

• Early stopping Just as it sounds…stop the network before 
reaching a local minimum…simple-but-effective

• Dropout Each iteration randomly selects a small number of 
edges to temporarily exclude from the network (weights=0)



(Goodfellow 2016)

Dropout (Srivastava et al, 2014) 

Figure 7.6Each time we load a minibatch to perform 
updates:
- randomly remove set of nodes (& associated 
edges)
- do updates on the remaining network

Includes input and hidden nodes – typically 
different probabilities of dropping each



(Goodfellow 2016)

Dropout

• Srivastava et al. (2014) showed more effective than weight decay and 
other “simple” regularization methods

• Computationally very cheap

• Doesn’t significantly limit type of model that can be used

• Can slow training and require larger model sizes

• Less effective when very few training examples available



Batch normalization (Ioffe and Szegedy, 2015)

• Fact: optimization is easier when the inputs of 
each layer is within constant interval, say [-2,2]

• Can we “enforce” this by modifying the NN’s 
design?

• Key idea: Let’s add a layer that normalizes (i.e., 
standardizes) the inputs!

• Recall minibatch SGD
• Computes gradients for 𝑘 data points, then updates 

the weights.
• Can we ensure that within a batch, for a layer, most of 

the inputs are “standardized”?
65



Batch normalization layer

• Example: neural network making 
predictions on a batch of M=3 
examples with batch normalization

Example 1

Example 2

Example 3

Using all examples from 

the batch to normalize the activations



Batch normalization layer

67
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Ioffe, Szegedy. ICML 2015

• Example: neural network making predictions on a batch of 
M=3 examples with batch normalization

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739



Batch normalization

• One twist for the test time
• The network is now well-trained to predict batches of M test examples
• What if we want to use the network to predict a single test example 𝑥?
• Use (averaged) 𝜇ℬ and 𝜎ℬ

2 computed in training time

• Why does batch normalization help?
• (Santurkar et al, 2018): it helps making the NN optimization landscape 

smoother

• Popular variants: layer normalization (Ba et al, 2016)
• widely used in transformer/ LLMs



Example

Play with a small multilayer perceptron on a 
binary classification task…

https://playground.tensorflow.org/ 

https://playground.tensorflow.org/




Scikit-Learn : Multilayer Perceptron

Fetch MNIST data from www.openml.org :

Train test split (60k / 10k),

Create MLP classifier instance,

• Single hidden layer (50 nodes)

• Use stochastic gradient descent

• Maximum of 10 learning iterations

• Small L2 regularization alpha=1e-4

http://www.openml.org/


Scikit-Learn : Multilayer Perceptron

Fit the MLP and print accuracy…

Visualize the weights for each node…

…magnitude of weights indicates which 
input features are important in prediction



Convolutional Neural Networks



NNs for images

• FCs can learn (pattern, location) combinations in images 

• The learned patterns do not generalize to different spatial locations.

74

𝑎(𝑙) 𝑎(𝑙+1)

Neuron 1: detects faces around (124, 236) 

Neuron 2: detects flowers around (34, 301) 

….



NNs for images

• Can we learn a group of neurons that detect a certain pattern (e.g. 
existence of a wheel) at all locations?

• low level: edge of some orientation, a patch of some color

• high level: shape of a wheel, face

• Encodes inductive bias
• Image classification: semantic of an image should be 

   translation-invariant 

75



Convolutional neural networks (CNN)

• A.K.A. ConvNet architecture

• A set of neural network architecture that consists of

• convolutional layers

• pooling layers

• fully-connected (FC) layers

76
(Stanford CS231n)



Convolution for single-channel images

Consider one filter with weights {𝑤𝑖,𝑗} with size F x F

• For every F x F region of the image, perform inner product (= element wise 
product, then sum them all) 

• Q: given a w x h image, after convolution with a F x F filter, what is the size of 
the resulting image?

• Terminologies: filter size, receptive field size, kernel.

77Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

https://arxiv.org/abs/1603.07285


Define the convolution of filter f on image I as:

𝑓 ∗ 𝐼 𝑥 = 

𝑚



𝑛

 𝐼 𝑥 + 𝑚, 𝑦 + 𝑛 𝑓(𝑚, 𝑛)

Convolution: Some Intuition

78

In signal processing, people use another convention for defining 
convolution:

𝑓 ∗ 𝐼 𝑥 = 

𝑚



𝑛

𝐼 𝑥 − 𝑚, 𝑦 − 𝑛 𝑓(𝑚, 𝑛)

A good filter detects interesting patterns in images

Learning finds good values for the convolution filter…



Convolutional layer for multi-channel images

Input: w (width) x h (height) x c (#channels)

• E.g. 32 x 32 x 3

• 3 channels: R, G, and B

A convolutional filter on such image is of 
shape F x F x c

• Only spatial structure in the first two 
dimensions

• Denoted by {𝑤𝑖,𝑗,𝑘} 

79
image from Stanford CS231n



Convolutional layer: multichannel images

• Consider one filter with weights {𝑤𝑖,𝑗,𝑘} with 5 x 5 x 3

• Imagine a sliding 3D window.

• Convolution:  For every 5 x 5 region of the image, perform inner product (= element wise 
product, then sum them all) 

• Then apply the activation function (e.g., ReLU)

• Results in 28 x 28 x 1 – called activation map.

• Now, we can do 𝐾 of these filters but with different weights {𝑤𝑖,𝑗,𝑘
(ℓ)

} for ℓ ∈ [𝐾] => 

output is 28 x 28 x 𝐾

80(image from https://www.quora.com/Why-do-we-use-convolutional-layers)

filter weights



Convolutional layers act as feature extractors

• Example filters learned at the first conv layer

• Each filter has size 11x11x3

• Many filters look like edge detectors

81
image from Stanford CS231n



Convolutional Layers beyond the First Layer

Generalization: conv layer as the 2nd  layer or more

• Input volume (3d object with size w x h x d): 
• the d (called depth) is not necessarily 3

• Output volume: size w’ x h’ x d’, where d’ is the number of filters at the 
current layer.

Interpretation: patterns over the patterns.

• Each filter now convolves and combines d’ 
activation maps for each spatial location.

• e.g., combinations of particular edges and textures
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Convolutional Layer: More Details

Stride length S

• Skip input regions; Move the sliding window of a filter not by 1 but by S. 

• E.g., S=2 means skipping every other 5 by 5 region.

Zero-padding P: add P number of artificial pixels
with value 0 around the input image on both sides

• E.g. given a 28 x 28 image, P=1 => pad it to a 30 x 30 image

• To ensure the spatial dimension is maintained
(otherwise, patterns at the corners are not detected well)

83
image from https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7



Example: P=1, S=1

image from https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7



Example: P=1, different strides in height & width

• 𝑆height = 3, 𝑆width = 2



Convolutional Layer: More Details
Stride length S

• Skip input regions; Move the sliding window of a filter not by 1 but by S. 

Zero-padding P: add P number of artificial pixels with value 0 around the 
input image on both sizes

Dimension Rules (same goes for height)

• W: input volume width,   F: filter width

• The output width
𝑊−𝐹+2𝑃

𝑆
+1

• E.g., W=32, F=5, P=0, S=1     =>    K = 28

• E.g., W=32, F=5, P=2, S=1     =>    K = 32

86

(usually, the filter has the same width and height)



Strides and padding: animations

87Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

Strides only Padding only Strides + Padding

https://arxiv.org/abs/1603.07285


Convolutional Layer: Summary

Input 𝑊1 × 𝐻1 × 𝐷1   (width, height, depth)

Hyperparameters # of filters 𝐾, filter size (=width=height) 𝐹, stride 𝑆, 
zero-padding 𝑃

Output 𝑊2 × 𝐻2 × 𝐷2

𝑊2 =
𝑊1−𝐹+2𝑃

𝑆
+ 1,        

𝐻2 =
𝐻1−𝐹+2𝑃

𝑆
+ 1,     

𝐷2 = 𝐾

88

More terminology: depth slice (W by H by 1), depth column (1 by 1 by D)



Final project report

• Credits will be given when you make and document your 
honest trials

• If you failed to implement something, please explain what you 
have done to find an answer and where you get stuck.

• DON’T:  ”I don’t know how to implement X”

• DO: “I read material A, and there is this package B that seems to 
help, but when I tried to apply, C became an issue. ..."



Convolutional Layer: Summary

Input 𝑊1 × 𝐻1 × 𝐷1   (width, height, depth)

Hyperparameters # of filters 𝐾, filter size (=width=height) 𝐹, stride 𝑆, 
zero-padding 𝑃

Output 𝑊2 × 𝐻2 × 𝐷2

𝑊2 =
𝑊1−𝐹+2𝑃

𝑆
+ 1,        

𝐻2 =
𝐻1−𝐹+2𝑃

𝑆
+ 1,     

𝐷2 = 𝐾
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Comparison: FC vs Conv

• Conv layer allows parsimonious representations:
• Inter-layer connections are local  

• parameter is shared across spatial locations.

• imposing inductive bias specialized for images

91

𝑎(𝑙) 𝑎(𝑙+1)



Case study: first layer of AlexNet (Krizhevsky et al ’12)

Input: 227x227x3, and the first conv layer output is 55x55x96 (96 filters)

• Each filter has 11*11*3 weights with 1 bias   =>   364 parameters 

• 364*96 = 34K total parameters are used to compute the output 55*55*96 = 290,400

• What if we didn’t do parameter sharing? I.e., for each location of image, use 
independent filter parameter w.

• #params = 290,400 * 364 = 105M

• What if we use FC to compute the same number of outputs? (the parsimony of local 
connections)

• #params = 230,187 * 290,400 = 66B

92



Pooling layer

• The role: Summarize the input and scale down the spatial size.

• has the effect of routing the region with the most activation.

• Recall depth slice: take the matrix at a particular depth.

• Max pooling: run a particular filter that computes maximum, for each depth slice.

• Variation: average pooling (but not popular).

• Recommended: Filter size F=2, stride length S=2.  (F=3, S=2 is also commonly used – overlapping 
pooling).

• Note: There are no parameters for this layer!
93figure from Stanford CS231n



Typical architectural patterns in CNN

94



Seeing what happens in CNN

• https://yosinski.com/deepvis#toolbox

95

https://yosinski.com/deepvis#toolbox
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CNN examples



LeNet-5

• Proposed in “Gradient-based learning applied to document 
recognition”, by Yann LeCun, Leon Bottou, Yoshua Bengio and 
Patrick Haffner, in Proceedings of the IEEE, 1998

• Apply convolution on 2D images (handwritten characters) and use 
backpropagation

• Structure: 2 convolutional layers (with pooling) + 3 fully connected 
layers 

• Input size: 32x32x1
• Convolution kernel size: 5x5
• Pooling: 2x2

97



LeNet-5

98
“Gradient-based learning applied to document recognition” , by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, in Proceedings of the IEEE, 1998

(depth 1)

5 by 5 filters

K=6

stride 1

2x2 pooling

stride 2

5 by 5 by 6 filters

K=16

stride 1

2x2 pooling

stride 2



• Won the ImageNet competition  with top-5 test error rate of 16.4% 
(second place was 26.2%).

• Almost just an extension of LeNet-5. But uses ReLU for the first time.

99
Krizhevsky, Sutskever, and Hinton, ImageNet Classification with Deep Convolutional Neural Networks, 2012.

(1000 classes)

https://en.wikipedia.org/wiki/AlexNet

AlexNet (2012)



VGGNet (2014): 7.3% error on ImageNet

100

• Mimic large convolutional filters with multiple small (3x3) convolutional filters

• Amortizing memory cost: every time it halves the spatial size, double the # of filters

slide from Stanford CS231n[Simonyan and Zisserman, 2014]



ResNet (2016): 3.5% error on ImageNet

• Proposed in “Deep residual learning for image recognition” by He, 
Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. In Proceedings 
of the IEEE conference on computer vision and pattern recognition,. 
2016.

• Apply very deep networks with repeated residual blocks.

• Structure: simply stacking residual blocks, but the network is very 
deep.

101



102

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf



Deep nets seem to suffer

103
http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
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(slides from Kaiming He)

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf



Key idea: skip connections

Skip connections

• 𝐹(𝑥) encodes residual representations, which has previously 
been explored in early works

• When backprop’ing, by the chain rule, gradients will ‘flow’ 
directly to the previous layer.

• In contrast, plain CNNs suffer from vanishing gradient 
problem

• It makes the optimization landscape much better

105

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

https://www.cs.umd.edu/~tomg/projects/landscapes/



ResNet

• VGG-style scheme: halve the spatial 
size, double the # of filters

• Use conv layer with stride 2 occasionally 
to reduce the spatial dimension => called 
“bottleneck” blocks.

106http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf



ResNet in PyTorch

Torchvision implementation: 
https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html

107

https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html


ImageNet nowadays

Top-5 accuracy is boring

SoTA top-1 accuracy is around 90.88%

108
https://paperswithcode.com/sota/image-classification-on-imagenet
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Autoencoder



Unsupervised Learning Review

• Recall: unlabeled data.

• Q: what is the main goal of unsupervised learning?

• Examples: clustering, PCA.

• Recall PCA can be used for  
‘representation learning’ = 
learning useful (and compact) 
features.

• NNs can be used to do 
generalizations of PCA.

110

(learned features = projected feature vector)



Introductory Example

• Suppose you have a number in {0,1,2,3,4,5,6,7}

• What would be a compact representation (say, for 
computers)?

• Q: how many bits do we need?

111



Early Observations

Train a pair of (encoder E, 
decoder D) such that    

- D(E(x)) recovers x

- imposing squared loss on all the 
output units & backpropagation.

Q: What do the hidden values 
(codes) E(x) look like?

112p107, Tom Mitchell, “Machine Learning”



Autoencoder using deep networks

113

image from https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

We can do this for any data!

How to use it: 

 - Encoder: for dimensionality reduction

 - Decoder: generate new samples from the distribution by varying the input ‘code’



PCA as a linear autoencoder

114

linear = no activation



PCA as a linear autoencoder

• The PCA can be represented as an autoencoder

with k units in the hidden layer, constant bias added in each layer):

• Encoder: ℎ =

− 𝑣1 −
…

− 𝑣𝑘 −
⋅ 𝑥 +

−𝑣1
⊤𝜇

…
−𝑣𝑘

⊤𝜇

• Decoder: 𝑥 =
| |

𝑣1 … 𝑣𝑘

| |
⋅ ℎ +

|
𝜇
|

115

1 1



Autoencoder using deep networks

116

image from https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

We can do this for any data!

What about images?



Training autoencoders

• Given:
• data 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑑, 
• Embedding dimension 𝑘 (𝑘 ≪ 𝑑)

• Goal: obtain 
• Encoder network 𝑓𝜃: ℝ𝑑 → ℝ𝑘

• Decoder network 𝑔𝜙: ℝ𝑘 → ℝ𝑑

• Such that for every 𝑖, 𝑥𝑖 ≈ 𝑔𝜙(𝑓𝜃(𝑥𝑖))

• Most commonly used formulation (can be straightforwardly trained 
by gradient-based methods): 

  minimize𝜃,𝜙 σ𝑖=1
𝑛 𝑥𝑖 − 𝑔𝜙 𝑓𝜃 𝑥𝑖

2
 

117Reconstruction error 



Autoencoder for images

• Encoder: conv-conv-pool-conv-conv-pool-…, 

• Decoder: conv-conv-pool-…?? It will reduce the spatial dimension 
rather than increasing it.

• How to do the opposite of pooling (or conv with stride length >= 2)?

118

Following slides largely based on Stanford cs231n https://youtu.be/nDPWywWRIRo?t=1109

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf



“Un”pooling

119(fig. from Stanford cs231n)



Max unpooling

120(fig from Stanford cs231n)

The dimensions in all layers of the network must be symmetric!



Transposed convolution

• Other names: upconvolution, fractionally strided convolution, 
backward strided convolution, deconvolution (don’t use this 
name)

• Recall: 3 x 3 convolution with stride 2 pad 1.

121(fig from Stanford cs231n)



Transposed convolution

122(fig from Stanford cs231n)

Disclaimer: this is not the inverse of convolution!

Rather, it’s just a variation of the convolution.



1D transposed convolution

123(fig from Stanford cs231n)



Decoders: additional remarks

• Decoders: can be directly used to generate data from the original data 
distribution

• There are many “modern” ways to train decoders, e.g. generative 
adversarial network (GAN) 

124

Following slides largely based on Stanford cs231n https://youtu.be/nDPWywWRIRo?t=1109

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf



Samples from fully-connected decoders

125(not using conv layers)

Ian Goodfellow et al., “Generative 

Adversarial Nets”, NeurIPS 2014



Samples from convolutional decoders

126Radford et al, ICLR 2016



Autoencoders: more usages

• Interpolate between two samples by interpolating their codes

127

𝐷(𝑧1) 𝐷(𝑧2)𝐷 𝑡𝑧1 + 1 − 𝑡 𝑧2  



Learned ‘code’ is interpretable

• This means that there are ‘directions’ in the latent code z that have 
particular meanings! 128

(slide from Stanford CS231n)



Learned ‘codes’ is interpretable

129



Resources

3Blue1Brown Youtube channel has a nice four-part intro:

https://www.youtube.com/watch?v=aircAruvnKk 

Free book by Michael Nielson uses MNIST example in Python:

http://neuralnetworksanddeeplearning.com/ 

“Dive into deep learning”: an online textbook with interactive notebook

  https://d2l.ai/index.html 

“The Deep Learning Book” by Goodfellow et al.

https://www.deeplearningbook.org/ 

https://www.youtube.com/watch?v=aircAruvnKk
http://neuralnetworksanddeeplearning.com/
https://d2l.ai/index.html
https://www.deeplearningbook.org/


Backup



Multilayer Perceptron

Final layer is typically a linear 
model… each output node is 

computed by

Recall that for multiclass 
logistic regression with K 

classes,

Vector of activations from

previous layer



Backpropagation
[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Activation at final layer involves 
weighted combination of 

activations at previous layer…

Which involves a weighted 
combination of the layer before 

it…

And so on…

https://www.youtube.com/watch?v=aircAruvnKk


Computing the Derivative

Recall the derivative chain rule

Differentiate g with

respect to w
Derivative of f at its

argument g(w)

e.g. treat g(w) as a variable

Alternatively we can write this as…



Derivative Chain Rule

Example Derivative of the logistic function,



Backpropagation

Example

This is simply the derivative chain rule applied through the 
entire network, from the output to the input



Backpropagation

• Implementation-wise all we need is a function that computes 
the derivative of each nonlinear activation

• We can repeatedly call this function, starting at the end of the 
network and moving backwards

• In practice, neural network implementations use auto 
differentiation to compute the derivative on-the-fly

• Can do this efficiently on graphical processing units (GPUs) 
on extremely large training datasets



L1 Regularization

Consider the case where                        There are two possible cases, 

:
• Optimal value is just wi=0

• Contribution of J(w;X,y) is “overwhelmed” by L1 regularizer

:
• Shifts wi in the direction of 0 by distance equal to a/H

Similar process for w<0 but in opposite direction. 



(Goodfellow 2016)

Sparse Representations

L1 regularization induces sparse 
parameterization – many parameters 0

Representational sparsity enforces 
many data elements 0 (or close to it)

Sparse Parameterization

Sparse Representation

Accomplished by same set of 
mechanisms as sparse param – norm 

penalty on representation

e.g. L1 penalty



(Goodfellow 2016)

Label Smoothing

• Many datasets have some mistakes in labels y

• Inject noise in labels at output
• Assume label is correct with probability 1-e (for some small e)

• Otherwise any other label is assigned

• Can incorporate this into cost function analytically

• Label smoothing regularizes model based on softmax
• Replaces hard assignment with 1-e and e/(k-1) ; for k labels

• Can use standard cross-entropy loss with soft targets



Define the convolution of filter f on image I as: 

𝐼 ∗ 𝑓 𝑥 = 

𝑚



𝑛

𝐼 𝑥 − 𝑚, 𝑦 − 𝑛 𝑓(𝑚, 𝑛)

Convolution: Some Intuition

141

Many ML libraries actually implement cross-correlation:

𝑓 ∗ 𝐼 𝑥 = 

𝑚



𝑛

 𝐼 𝑥 + 𝑚, 𝑦 + 𝑛 𝑓(𝑚, 𝑛)

Learning finds good values for the convolution filter…



VGGNet (2014): 7.3% error on ImageNet

142

• Mimic large convolutional filters with multiple small (3x3) convolutional filters

• Every time it halves the spatial size, double the # of filters

slide from Stanford CS231n[Simonyan and Zisserman, 2014]



1D transposed convolution: matrix form

143(fig from Stanford cs231n)
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