
CSC 480/580: Principles of Machine Learning

Feed Forward Neural Networks

Chicheng Zhang

Basis Functions

Basis functions transform linear models into nonlinear ones…

…but it is often difficult to find a good basis transformation

Linear Regression
Classification

(Logistic Regression)

Learning Basis Functions

What if we could learn a basis function so that a simple linear
model performs well…

…this is essentially what standard neural networks do…

Neural Net

Warped SpaceData Space

Ignore the circled points…I

reused these from the SVM slides

Neural Networks

• Flexible nonlinear transformations of data

• Resulting transformation is easily fit with a linear model

• Relatively efficient learning procedure scales to massive data

• Apply to many Machine Learning / Data Science problems
• Regression

• Classification

• Dimensionality reduction

• Function approximation

• Many application-specific problems

Neural Networks

Forms of NNs are used all over the place nowadays…

AI Chat Bots Self-Driving Cars

Machine Translation

Creepy Robots

Rosenblatt’s Perceptron

In 1957 Frank Rosenblatt constructed
the first (single layer) neural network

known as a “perceptron”

He demonstrated that it is capable of
recognizing characters projected onto a

20x20 “pixel” array of photosensors

Despite recent attention,
neural networks are fairly old

Rosenblatt’s Perceptron

Perceptron

• In Rosenblatt’s perceptron, the inputs are tied directly to output

• “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics” (1962)

• Criticized by Marvin Minsky in book “Perceptrons” since can only learn linearly-separable functions

• The perceptron is just linear classification in disguise

Multilayer Perceptron

[Source: http://neuralnetworksanddeeplearning.com]

Input layer

perceptrons

Hidden layer

perceptrons

This is the quintessential Neural Network…

…also called Feed Forward Neural Net or Artificial Neural Net

Adding hidden layers
allows NN to learn
arbitrary functions

http://neuralnetworksanddeeplearning.com/

Modern Neural Networks

[Source: Krizhevsky et al. (NIPS 2012)]

Modern Deep Neural networks have many hidden layers

…and have many trillions of parameters to learn

Handwritten Digit Classification

Classifying handwritten digits is the “Hello World” of NNs

Modified National Institute of
Standards and Technology

(MNIST) database contains 60k
training and 10k test images

Each character is centered
in a 28x28=784 pixel

grayscale image

Multilayer Perceptron for MNIST Classification[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

Each image pixel is a

number in [0,1] indicated

by highlighted color

https://www.youtube.com/watch?v=aircAruvnKk

Feedforward Procedure

Each node computes a
weighted combination of nodes

at the previous layer…

Then applies a nonlinear
function to the result

Often, we also introduce

a constant bias parameter

Nonlinear Activation functions

We call this an activation function and typically write it in vector form,

An early choice was the logistic function,

Later found to lead to slow learning and the
rectified linear unit (ReLU) become popular,

Multilayer Perceptron

Final layer is typically a linear
model… each output node is

computed by

Recall that for binary logistic
regression with 2 classes,

Vector of activations from

previous layer

[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

Each parameter has some impact

on the output…need to tweak

(learn) all parameters

simultaneously to improve

prediction accuracy

https://www.youtube.com/watch?v=aircAruvnKk

Reading quiz

• https://cs231n.github.io/optimization-1/

• New concepts
• Optimization methods:

• random search,
• random local search,
• Cf. gradient descent

• Gradient check: use slow & easy numerical gradient to check the
correctness of implementation of fast & error prone analytical
gradient

• Effect of step size

https://cs231n.github.io/optimization-1/

Training Multilayer Perceptron

For each training example,

predict label and adjust

weights…

• How to score final layer output?

• How to adjust weights?

Training Multilayer Perceptron

One way to score (square loss): based on difference between final layer

and one-hot vector of true class… ℓ𝑖 𝜃 = σ𝑗 𝑓𝑗 𝑥𝑖; 𝜃 − 𝑦𝑗
2

Input

[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

https://www.youtube.com/watch?v=aircAruvnKk

Training Multilayer Perceptron: for classification

• For classification, it is most popular to use:
• A softmax layer as final output

 𝜎 Ԧ𝑓
𝑐

=
𝑒𝑓𝑐

σ𝑗=1
𝐶 𝑒

𝑓𝑗
, 𝑐 = 1, … , 𝐾

probability estimate of each class given example

• Cross-entropy loss for training

ℓ Ԧ𝑝, 𝑦 = log
1

𝑝𝑦

(if 𝑙 represents one-hot encoding of label, often

written as σ𝑐 𝑙𝑐 log
1

𝑝𝑐
)

measures the “surprise” of label being 𝑦 based
on current belief

E.g. 𝑦 = 2, ℓ Ԧ𝑝, 𝑦 = log
1

0.90

Training Multilayer Perceptron

Our loss function for ith example is error in terms of weights / biases…

13,002 Parameters

in this network

…minimize loss over all training data…

This is a super high-dimensional optimization (13,002
dimensions in this example)…how do we solve it?

Gradient descent!

Learning algorithm intuition

• Gradient descent: Move in direction of greatest local
improvement (greedily)

• “Knob turning”

• ”knob” = weight of an edge

• If a neuron increases the probability of an incorrect prediction, its
knobs will be turned down.

• If a neuron increases the probability of a correct prediction, its knobs
will be turned up.

21

Training Multilayer Perceptron

Need to find local / global optimal solution…

Convex Cost Function

Easy!

Non-convex Cost Function

Hard!

High-Dimensional Non-convex

Hard!

Actually, the situation is much worse, since the cost is super
13,002(high)-dimensional…but we proceed as is…

Gradient descent (GD)

• For 𝑡 = 1, . . 𝑇: 𝜃𝑡+1 ← 𝜃𝑡 − 𝛼 ∇ℒ(𝜃𝑡)

• ∇ℒ 𝜃 =
𝜕ℒ

𝜕𝜃 1
, … ,

𝜕ℒ

𝜕𝜃 𝑑
 is the gradient of ℒ at point 𝜃

• Intuition: ∇ℒ 𝜃 / −∇ℒ 𝜃 points to the direction

In which ℒ increase / decreases the most
• GD provides local improvement on ℒ

• Special case (linear fn): ℒ 𝜃 = 𝑥𝑇𝜃

Gradient descent: example

• Example: ℒ 𝜃 =
1

2
(𝜃 1 2 + 4𝜃 2 2)

• ∇ℒ 𝜃 = (𝜃 1 , 4𝜃(2))

•
𝜃𝑡+1 1

𝜃𝑡+1 2
=

𝜃𝑡 1

𝜃𝑡 2
− 𝛼

𝜃𝑡 1

4𝜃𝑡 2
=

1 − 𝛼 𝜃𝑡 1

1 − 4𝛼 𝜃𝑡 2
= ⋯ =

1 − 𝛼 𝑡𝜃1 1

1 − 4𝛼 𝑡𝜃1 2

• When 𝛼 is small, 𝜃𝑡 → 0,0 - global minimizer of ℒ

https://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf

Vanishing as 𝒕 → ∞

GD: remarks

• Does not promise to converge to global optima

• In practice, people use it (or its variants) anyways and it
performs well

• This is especially true in training neural networks

Stochastic gradient descent (SGD)

• Using GD to optimize training loss ℒ(𝜃) can be expensive!

• Full gradient ∇ℒ 𝜃 =
1

𝑚
σ𝑖=1

𝑚 ∇ℓ𝑖(𝜃), which takes O(𝑚) time to evaluate

• To reduce computational cost: use instead

 𝜃𝑡+1 ← 𝜃𝑡 − 𝛼𝑔𝑡,

 where 𝑔𝑡 is an unbiased estimate of ∇ℒ(𝜃𝑡)

• One choice: 𝑔𝑡 = ∇ℓ𝑖𝑡
(𝜃𝑡), where 𝑖𝑡 ∼ Uniform({1, … , 𝑚})

• Only one gradient evaluation!

• Well-established convergence guarantees

Stochastic gradient descent (SGD)

• Claim: 𝑔𝑡 = ∇ℓ𝑖𝑡
(𝜃𝑡), where 𝑖𝑡 ∼ Uniform({1, … , 𝑚}) is an unbiased

estimate of ∇ℒ(𝜃𝑡)

• Justification: 𝔼 𝑔𝑡 = σ𝑖=1
𝑚 ℙ(𝑖𝑡 = 𝑖) ∇ℓ𝑖(𝜃𝑡) (defn of expectation)

 =
1

𝑚
σ𝑖=1

𝑚 ∇ℓ𝑖(𝜃𝑡) (PMF of 𝑖𝑡)

 = ∇
1

𝑚
σ𝑖=1

𝑚 ℓ𝑖 𝜃𝑡 (linearity of derivative)

 = ∇ℒ(𝜃𝑡)

• Extension (Mini-batch SG): 𝑔𝑡 =
1

𝑘
σ𝑖∈𝑆𝑡

∇ℓ𝑖(𝜃𝑡) (𝑆𝑡 is a random

size-𝑘 subset of {1, … , 𝑚}) is also an unbiased estimate

28

Deep learning, a field of machine learning

Dog 90%

Mop 10%

Learning algorithm
(backpropagation)

29

30

Deep learning with backpropagation

31

Deep learning with backpropagation

32

Deep learning with backpropagation

33

O ops!

Deep learning with backpropagation

34

Decrease signal on ”synapses”
that fired incorrectly!

Deep learning with backpropagation

35

Increase signal on ”synapses”
that did not fire sufficiently!

Deep learning with backpropagation

36

37

Collection of all

weights and biases in

the network

38

One training example

39

Partial derivative of the cost

function C for each

parameter (weight or bias) in

the network

40

Learning rate, which

is a hyper parameter

Computing the Derivative

So we need to compute derivatives of a super complicated
function…

• Tells us how much to turn the “tuning knob” (i.e. weight)

• But how do we compute derivatives for edge weights not directly
connected to the output layer?

• Key technique: Backpropagation

Backpropagation
[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

Activation at final layer involves
weighted combination of

activations at previous layer…

Which involves a weighted
combination of the layer before

it…

And so on…

https://www.youtube.com/watch?v=aircAruvnKk

Key conceptual tool: Computation graph

• A DAG that describes the order of computation in a general
computational process

• Nodes: variables

• Edges: dependency of the variables

• 𝑓1 = 𝐹1(𝑊1, 𝑥),… , 𝑓𝑛 = 𝐹𝑛 𝑊𝑛, 𝑓𝑛−1

• Has more general application beyond training neural networks
• Differentiable physics simulation engine (Hu et al 2020)

• Differentiable ray-tracing (e.g. Yang et al 2022)

• ICML workshops on “differentiable almost everything”

 https://differentiable.xyz/
43

Key tool: Computation graph

• Sometimes useful to highlight the operation that computes
each variable as well

• E.g. 𝑞 = 𝐹𝑞 𝑥, 𝑦 = 𝑥 + 𝑦; 𝑓 = 𝐹𝑓 𝑞, 𝑧 = 𝑞 ⋅ 𝑧

• Backpropagation is the procedure of repeatedly applying the
derivative chain rule to compute the full derivative

Chain rule in computation graphs: an example

• 𝑞 = 𝐹1 𝑥, 𝑦 = 𝑥 + 𝑦; 𝑓 = 𝐹2 𝑞, 𝑧 = 𝑞 ⋅ 𝑧
• Representing function 𝐹 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

• How to calculate ∇𝐹 =
𝜕𝑓

𝜕𝑥
,

𝜕𝑓

𝜕𝑦
,

𝜕𝑓

𝜕𝑧
?

• Interpretation of
𝜕𝑣

𝜕𝑢
: if node 𝑢 is changed by 1 unit independently, how much

does 𝑣 change?

• Using reverse topological order, go over all variables in the graph

•
𝜕𝑓

𝜕𝑞
= −4,

𝜕𝑓

𝜕𝑧
= 3

•
𝜕𝑓

𝜕𝑥
=

𝜕𝑓

𝜕𝑞
⋅

𝜕𝑞

𝜕𝑥
= −4

•
𝜕𝑓

𝜕𝑦
=

𝜕𝑓

𝜕𝑞
⋅

𝜕𝑞

𝜕𝑦
= −4

45

figure from Stanford cs231n

green: node values

 red: derivatives

Backpropagation

• In practice, neural network implementations use auto
differentiation to compute the derivative on-the-fly

• Can do this efficiently on graphical processing units (GPUs)
on extremely large training datasets

(Taken from Matus Telgarsky’s deep learning

lecture: https://mjt.cs.illinois.edu/ml/lec8.pdf)

Vanishing / exploding gradient problems

• Experimental observation:
𝜕𝑓

𝜕𝑤𝑖
 for 𝑤𝑖 in closer-to-

input layers are more likely to be tiny (vanishing) /
huge (exploding), leading to problematic updates

• We’ll see NN designs that mitigates this

Expressive power of neural networks

• (Cybenko, 1989; Hornik et al, 1989)

• Does this mean that there is no benefit in learning deeper
networks? No..

• No (Eldan and Shamir, 2015; Telgarsky, 2016)

48

Regularization

Regularization

With four parameters I can fit an elephant. With five I
can make him wiggle his trunk. - John von Neumann

Our example model has 13,002
parameters…that’s a lot of elephants!

Regularization is useful…

…numerous regularization schemes
are used in training neural networks

L2 Regularization

Formalize the regularized cost function as,

Consider an L2 penalty,

Gradient (derivative) with respect to w is given by,

Take a single step in the direction of the gradient,

L2 Regularization (Weight Decay)

Written another way, a single gradient step is:

• Can see this is a modification to the learning rule (gradient descent)

• “Shrinks” the weight by constant factor on each step

• Then perform usual gradient step

Learning Rate

(how big of a step)

Regularization

Strength (Coefficient)

Regularization : Weight Decay

L1 Regularization

(Sub-)gradient given by,

• Very different effect from L2 weight decay

• Regularization contribution no longer scales linearly with each w

• Constant addition with sign equal to sign(w)

• Has a sparsity-inducing property (encourages some weights to be 0)

(Goodfellow 2016)

Parameter Tying / Sharing

• Introduces inductive bias
• There should be dependencies among parameters

• Parameters should be close / similar

• Hard constraints force sets of parameters to be equal
• Known as parameter sharing

• Only subset of unique parameters needs to be stored in memory

• Example: convolutional neural network (we will discuss in detail)

(Goodfellow 2016)

Dataset Augmentation

• Train on more data (always more data)

• What if we don’t have more data? (Make up more)

• Easiest for classification

• Generate new (x,y) pairs by transforming an existing (x,y)

• Particularly effective for object recognition
• Translation

• Scaling

• Rotation

• …

(Goodfellow 2016)

Dataset Augmentation

Affine Distortion Noise Elastic Deformation

Horizontal flip Random Translation Hue Shift

(Goodfellow 2016)

Dataset Augmentation

• Need to avoid transformations that change class

• For example mirror “b” to produce “d”

• Rotation turns “6” into “9”

• Some transformations are not easy to perform, e.g. out-of-
plane rotation

(Goodfellow 2016)

Learning Curves – Early Stopping

Figure 7.3

Early stopping: terminate when validation set

performance stops improving

(Goodfellow 2016)

(Goodfellow 2016)

Early Stopping

• Think of it as efficient hyperparameter selection algorithm
(hyperparameter = number of training steps)

• Requires almost no change to underlying training procedure
• Contrast with weight decay that requires hyperparameter tuning

Regularization

• L1+L2 (elastic net) regularization

• Data Augmentation Synthetically expand training data by
applying random transformations

• Early stopping Just as it sounds…stop the network before
reaching a local minimum…simple-but-effective

• Dropout Each iteration randomly selects a small number of
edges to temporarily exclude from the network (weights=0)

(Goodfellow 2016)

Dropout (Srivastava et al, 2014)

Figure 7.6Each time we load a minibatch to perform
updates:
- randomly remove set of nodes (& associated
edges)
- do updates on the remaining network

Includes input and hidden nodes – typically
different probabilities of dropping each

(Goodfellow 2016)

Dropout

• Srivastava et al. (2014) showed more effective than weight decay and
other “simple” regularization methods

• Computationally very cheap

• Doesn’t significantly limit type of model that can be used

• Can slow training and require larger model sizes

• Less effective when very few training examples available

Batch normalization (Ioffe and Szegedy, 2015)

• Fact: optimization is easier when the inputs of
each layer is within constant interval, say [-2,2]

• Can we “enforce” this by modifying the NN’s
design?

• Key idea: Let’s add a layer that normalizes (i.e.,
standardizes) the inputs!

• Recall minibatch SGD
• Computes gradients for 𝑘 data points, then updates

the weights.
• Can we ensure that within a batch, for a layer, most of

the inputs are “standardized”?
65

Batch normalization layer

• Example: neural network making
predictions on a batch of M=3
examples with batch normalization

Example 1

Example 2

Example 3

Using all examples from

the batch to normalize the activations

Batch normalization layer

67
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Ioffe, Szegedy. ICML 2015

• Example: neural network making predictions on a batch of
M=3 examples with batch normalization

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739

Batch normalization

• One twist for the test time
• The network is now well-trained to predict batches of M test examples
• What if we want to use the network to predict a single test example 𝑥?
• Use (averaged) 𝜇ℬ and 𝜎ℬ

2 computed in training time

• Why does batch normalization help?
• (Santurkar et al, 2018): it helps making the NN optimization landscape

smoother

• Popular variants: layer normalization (Ba et al, 2016)
• widely used in transformer/ LLMs

Example

Play with a small multilayer perceptron on a
binary classification task…

https://playground.tensorflow.org/

https://playground.tensorflow.org/

Scikit-Learn : Multilayer Perceptron

Fetch MNIST data from www.openml.org :

Train test split (60k / 10k),

Create MLP classifier instance,

• Single hidden layer (50 nodes)

• Use stochastic gradient descent

• Maximum of 10 learning iterations

• Small L2 regularization alpha=1e-4

http://www.openml.org/

Scikit-Learn : Multilayer Perceptron

Fit the MLP and print accuracy…

Visualize the weights for each node…

…magnitude of weights indicates which
input features are important in prediction

Convolutional Neural Networks

NNs for images

• FCs can learn (pattern, location) combinations in images

• The learned patterns do not generalize to different spatial locations.

74

𝑎(𝑙) 𝑎(𝑙+1)

Neuron 1: detects faces around (124, 236)

Neuron 2: detects flowers around (34, 301)

….

NNs for images

• Can we learn a group of neurons that detect a certain pattern (e.g.
existence of a wheel) at all locations?

• low level: edge of some orientation, a patch of some color

• high level: shape of a wheel, face

• Encodes inductive bias
• Image classification: semantic of an image should be

 translation-invariant

75

Convolutional neural networks (CNN)

• A.K.A. ConvNet architecture

• A set of neural network architecture that consists of

• convolutional layers

• pooling layers

• fully-connected (FC) layers

76
(Stanford CS231n)

Convolution for single-channel images

Consider one filter with weights {𝑤𝑖,𝑗} with size F x F

• For every F x F region of the image, perform inner product (= element wise
product, then sum them all)

• Q: given a w x h image, after convolution with a F x F filter, what is the size of
the resulting image?

• Terminologies: filter size, receptive field size, kernel.

77Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

https://arxiv.org/abs/1603.07285

Define the convolution of filter f on image I as:

𝑓 ∗ 𝐼 𝑥 = ෍

𝑚

෍

𝑛

 𝐼 𝑥 + 𝑚, 𝑦 + 𝑛 𝑓(𝑚, 𝑛)

Convolution: Some Intuition

78

In signal processing, people use another convention for defining
convolution:

𝑓 ∗ 𝐼 𝑥 = ෍

𝑚

෍

𝑛

𝐼 𝑥 − 𝑚, 𝑦 − 𝑛 𝑓(𝑚, 𝑛)

A good filter detects interesting patterns in images

Learning finds good values for the convolution filter…

Convolutional layer for multi-channel images

Input: w (width) x h (height) x c (#channels)

• E.g. 32 x 32 x 3

• 3 channels: R, G, and B

A convolutional filter on such image is of
shape F x F x c

• Only spatial structure in the first two
dimensions

• Denoted by {𝑤𝑖,𝑗,𝑘}

79
image from Stanford CS231n

Convolutional layer: multichannel images

• Consider one filter with weights {𝑤𝑖,𝑗,𝑘} with 5 x 5 x 3

• Imagine a sliding 3D window.

• Convolution: For every 5 x 5 region of the image, perform inner product (= element wise
product, then sum them all)

• Then apply the activation function (e.g., ReLU)

• Results in 28 x 28 x 1 – called activation map.

• Now, we can do 𝐾 of these filters but with different weights {𝑤𝑖,𝑗,𝑘
(ℓ)

} for ℓ ∈ [𝐾] =>

output is 28 x 28 x 𝐾

80(image from https://www.quora.com/Why-do-we-use-convolutional-layers)

filter weights

Convolutional layers act as feature extractors

• Example filters learned at the first conv layer

• Each filter has size 11x11x3

• Many filters look like edge detectors

81
image from Stanford CS231n

Convolutional Layers beyond the First Layer

Generalization: conv layer as the 2nd layer or more

• Input volume (3d object with size w x h x d):
• the d (called depth) is not necessarily 3

• Output volume: size w’ x h’ x d’, where d’ is the number of filters at the
current layer.

Interpretation: patterns over the patterns.

• Each filter now convolves and combines d’
activation maps for each spatial location.

• e.g., combinations of particular edges and textures

82

Convolutional Layer: More Details

Stride length S

• Skip input regions; Move the sliding window of a filter not by 1 but by S.

• E.g., S=2 means skipping every other 5 by 5 region.

Zero-padding P: add P number of artificial pixels
with value 0 around the input image on both sides

• E.g. given a 28 x 28 image, P=1 => pad it to a 30 x 30 image

• To ensure the spatial dimension is maintained
(otherwise, patterns at the corners are not detected well)

83
image from https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Example: P=1, S=1

image from https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Example: P=1, different strides in height & width

• 𝑆height = 3, 𝑆width = 2

Convolutional Layer: More Details
Stride length S

• Skip input regions; Move the sliding window of a filter not by 1 but by S.

Zero-padding P: add P number of artificial pixels with value 0 around the
input image on both sizes

Dimension Rules (same goes for height)

• W: input volume width, F: filter width

• The output width
𝑊−𝐹+2𝑃

𝑆
+1

• E.g., W=32, F=5, P=0, S=1 => K = 28

• E.g., W=32, F=5, P=2, S=1 => K = 32

86

(usually, the filter has the same width and height)

Strides and padding: animations

87Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

Strides only Padding only Strides + Padding

https://arxiv.org/abs/1603.07285

Convolutional Layer: Summary

Input 𝑊1 × 𝐻1 × 𝐷1 (width, height, depth)

Hyperparameters # of filters 𝐾, filter size (=width=height) 𝐹, stride 𝑆,
zero-padding 𝑃

Output 𝑊2 × 𝐻2 × 𝐷2

𝑊2 =
𝑊1−𝐹+2𝑃

𝑆
+ 1,

𝐻2 =
𝐻1−𝐹+2𝑃

𝑆
+ 1,

𝐷2 = 𝐾

88

More terminology: depth slice (W by H by 1), depth column (1 by 1 by D)

Final project report

• Credits will be given when you make and document your
honest trials

• If you failed to implement something, please explain what you
have done to find an answer and where you get stuck.

• DON’T: ”I don’t know how to implement X”

• DO: “I read material A, and there is this package B that seems to
help, but when I tried to apply, C became an issue. ..."

Convolutional Layer: Summary

Input 𝑊1 × 𝐻1 × 𝐷1 (width, height, depth)

Hyperparameters # of filters 𝐾, filter size (=width=height) 𝐹, stride 𝑆,
zero-padding 𝑃

Output 𝑊2 × 𝐻2 × 𝐷2

𝑊2 =
𝑊1−𝐹+2𝑃

𝑆
+ 1,

𝐻2 =
𝐻1−𝐹+2𝑃

𝑆
+ 1,

𝐷2 = 𝐾

90

Comparison: FC vs Conv

• Conv layer allows parsimonious representations:
• Inter-layer connections are local

• parameter is shared across spatial locations.

• imposing inductive bias specialized for images

91

𝑎(𝑙) 𝑎(𝑙+1)

Case study: first layer of AlexNet (Krizhevsky et al ’12)

Input: 227x227x3, and the first conv layer output is 55x55x96 (96 filters)

• Each filter has 11*11*3 weights with 1 bias => 364 parameters

• 364*96 = 34K total parameters are used to compute the output 55*55*96 = 290,400

• What if we didn’t do parameter sharing? I.e., for each location of image, use
independent filter parameter w.

• #params = 290,400 * 364 = 105M

• What if we use FC to compute the same number of outputs? (the parsimony of local
connections)

• #params = 230,187 * 290,400 = 66B

92

Pooling layer

• The role: Summarize the input and scale down the spatial size.

• has the effect of routing the region with the most activation.

• Recall depth slice: take the matrix at a particular depth.

• Max pooling: run a particular filter that computes maximum, for each depth slice.

• Variation: average pooling (but not popular).

• Recommended: Filter size F=2, stride length S=2. (F=3, S=2 is also commonly used – overlapping
pooling).

• Note: There are no parameters for this layer!
93figure from Stanford CS231n

Typical architectural patterns in CNN

94

Seeing what happens in CNN

• https://yosinski.com/deepvis#toolbox

95

https://yosinski.com/deepvis#toolbox

96

CNN examples

LeNet-5

• Proposed in “Gradient-based learning applied to document
recognition”, by Yann LeCun, Leon Bottou, Yoshua Bengio and
Patrick Haffner, in Proceedings of the IEEE, 1998

• Apply convolution on 2D images (handwritten characters) and use
backpropagation

• Structure: 2 convolutional layers (with pooling) + 3 fully connected
layers

• Input size: 32x32x1
• Convolution kernel size: 5x5
• Pooling: 2x2

97

LeNet-5

98
“Gradient-based learning applied to document recognition” , by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, in Proceedings of the IEEE, 1998

(depth 1)

5 by 5 filters

K=6

stride 1

2x2 pooling

stride 2

5 by 5 by 6 filters

K=16

stride 1

2x2 pooling

stride 2

• Won the ImageNet competition with top-5 test error rate of 16.4%
(second place was 26.2%).

• Almost just an extension of LeNet-5. But uses ReLU for the first time.

99
Krizhevsky, Sutskever, and Hinton, ImageNet Classification with Deep Convolutional Neural Networks, 2012.

(1000 classes)

https://en.wikipedia.org/wiki/AlexNet

AlexNet (2012)

VGGNet (2014): 7.3% error on ImageNet

100

• Mimic large convolutional filters with multiple small (3x3) convolutional filters

• Amortizing memory cost: every time it halves the spatial size, double the # of filters

slide from Stanford CS231n[Simonyan and Zisserman, 2014]

ResNet (2016): 3.5% error on ImageNet

• Proposed in “Deep residual learning for image recognition” by He,
Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. In Proceedings
of the IEEE conference on computer vision and pattern recognition,.
2016.

• Apply very deep networks with repeated residual blocks.

• Structure: simply stacking residual blocks, but the network is very
deep.

101

102

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

Deep nets seem to suffer

103
http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

104

(slides from Kaiming He)

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

Key idea: skip connections

Skip connections

• 𝐹(𝑥) encodes residual representations, which has previously
been explored in early works

• When backprop’ing, by the chain rule, gradients will ‘flow’
directly to the previous layer.

• In contrast, plain CNNs suffer from vanishing gradient
problem

• It makes the optimization landscape much better

105

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

https://www.cs.umd.edu/~tomg/projects/landscapes/

ResNet

• VGG-style scheme: halve the spatial
size, double the # of filters

• Use conv layer with stride 2 occasionally
to reduce the spatial dimension => called
“bottleneck” blocks.

106http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

ResNet in PyTorch

Torchvision implementation:
https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html

107

https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html

ImageNet nowadays

Top-5 accuracy is boring

SoTA top-1 accuracy is around 90.88%

108
https://paperswithcode.com/sota/image-classification-on-imagenet

109

Autoencoder

Unsupervised Learning Review

• Recall: unlabeled data.

• Q: what is the main goal of unsupervised learning?

• Examples: clustering, PCA.

• Recall PCA can be used for
‘representation learning’ =
learning useful (and compact)
features.

• NNs can be used to do
generalizations of PCA.

110

(learned features = projected feature vector)

Introductory Example

• Suppose you have a number in {0,1,2,3,4,5,6,7}

• What would be a compact representation (say, for
computers)?

• Q: how many bits do we need?

111

Early Observations

Train a pair of (encoder E,
decoder D) such that

- D(E(x)) recovers x

- imposing squared loss on all the
output units & backpropagation.

Q: What do the hidden values
(codes) E(x) look like?

112p107, Tom Mitchell, “Machine Learning”

Autoencoder using deep networks

113

image from https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

We can do this for any data!

How to use it:

 - Encoder: for dimensionality reduction

 - Decoder: generate new samples from the distribution by varying the input ‘code’

PCA as a linear autoencoder

114

linear = no activation

PCA as a linear autoencoder

• The PCA can be represented as an autoencoder

with k units in the hidden layer, constant bias added in each layer):

• Encoder: ℎ =

− 𝑣1 −
…

− 𝑣𝑘 −
⋅ 𝑥 +

−𝑣1
⊤𝜇

…
−𝑣𝑘

⊤𝜇

• Decoder: ෤𝑥 =
| |

𝑣1 … 𝑣𝑘

| |
⋅ ℎ +

|
𝜇
|

115

1 1

Autoencoder using deep networks

116

image from https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

We can do this for any data!

What about images?

Training autoencoders

• Given:
• data 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑑,
• Embedding dimension 𝑘 (𝑘 ≪ 𝑑)

• Goal: obtain
• Encoder network 𝑓𝜃: ℝ𝑑 → ℝ𝑘

• Decoder network 𝑔𝜙: ℝ𝑘 → ℝ𝑑

• Such that for every 𝑖, 𝑥𝑖 ≈ 𝑔𝜙(𝑓𝜃(𝑥𝑖))

• Most commonly used formulation (can be straightforwardly trained
by gradient-based methods):

 minimize𝜃,𝜙 σ𝑖=1
𝑛 𝑥𝑖 − 𝑔𝜙 𝑓𝜃 𝑥𝑖

2

117Reconstruction error

Autoencoder for images

• Encoder: conv-conv-pool-conv-conv-pool-…,

• Decoder: conv-conv-pool-…?? It will reduce the spatial dimension
rather than increasing it.

• How to do the opposite of pooling (or conv with stride length >= 2)?

118

Following slides largely based on Stanford cs231n https://youtu.be/nDPWywWRIRo?t=1109

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

“Un”pooling

119(fig. from Stanford cs231n)

Max unpooling

120(fig from Stanford cs231n)

The dimensions in all layers of the network must be symmetric!

Transposed convolution

• Other names: upconvolution, fractionally strided convolution,
backward strided convolution, deconvolution (don’t use this
name)

• Recall: 3 x 3 convolution with stride 2 pad 1.

121(fig from Stanford cs231n)

Transposed convolution

122(fig from Stanford cs231n)

Disclaimer: this is not the inverse of convolution!

Rather, it’s just a variation of the convolution.

1D transposed convolution

123(fig from Stanford cs231n)

Decoders: additional remarks

• Decoders: can be directly used to generate data from the original data
distribution

• There are many “modern” ways to train decoders, e.g. generative
adversarial network (GAN)

124

Following slides largely based on Stanford cs231n https://youtu.be/nDPWywWRIRo?t=1109

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

Samples from fully-connected decoders

125(not using conv layers)

Ian Goodfellow et al., “Generative

Adversarial Nets”, NeurIPS 2014

Samples from convolutional decoders

126Radford et al, ICLR 2016

Autoencoders: more usages

• Interpolate between two samples by interpolating their codes

127

𝐷(𝑧1) 𝐷(𝑧2)𝐷 𝑡𝑧1 + 1 − 𝑡 𝑧2

Learned ‘code’ is interpretable

• This means that there are ‘directions’ in the latent code z that have
particular meanings! 128

(slide from Stanford CS231n)

Learned ‘codes’ is interpretable

129

Resources

3Blue1Brown Youtube channel has a nice four-part intro:

https://www.youtube.com/watch?v=aircAruvnKk

Free book by Michael Nielson uses MNIST example in Python:

http://neuralnetworksanddeeplearning.com/

“Dive into deep learning”: an online textbook with interactive notebook

 https://d2l.ai/index.html

“The Deep Learning Book” by Goodfellow et al.

https://www.deeplearningbook.org/

https://www.youtube.com/watch?v=aircAruvnKk
http://neuralnetworksanddeeplearning.com/
https://d2l.ai/index.html
https://www.deeplearningbook.org/

Backup

Multilayer Perceptron

Final layer is typically a linear
model… each output node is

computed by

Recall that for multiclass
logistic regression with K

classes,

Vector of activations from

previous layer

Backpropagation
[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

Activation at final layer involves
weighted combination of

activations at previous layer…

Which involves a weighted
combination of the layer before

it…

And so on…

https://www.youtube.com/watch?v=aircAruvnKk

Computing the Derivative

Recall the derivative chain rule

Differentiate g with

respect to w
Derivative of f at its

argument g(w)

e.g. treat g(w) as a variable

Alternatively we can write this as…

Derivative Chain Rule

Example Derivative of the logistic function,

Backpropagation

Example

This is simply the derivative chain rule applied through the
entire network, from the output to the input

Backpropagation

• Implementation-wise all we need is a function that computes
the derivative of each nonlinear activation

• We can repeatedly call this function, starting at the end of the
network and moving backwards

• In practice, neural network implementations use auto
differentiation to compute the derivative on-the-fly

• Can do this efficiently on graphical processing units (GPUs)
on extremely large training datasets

L1 Regularization

Consider the case where There are two possible cases,

:
• Optimal value is just wi=0

• Contribution of J(w;X,y) is “overwhelmed” by L1 regularizer

:
• Shifts wi in the direction of 0 by distance equal to a/H

Similar process for w<0 but in opposite direction.

(Goodfellow 2016)

Sparse Representations

L1 regularization induces sparse
parameterization – many parameters 0

Representational sparsity enforces
many data elements 0 (or close to it)

Sparse Parameterization

Sparse Representation

Accomplished by same set of
mechanisms as sparse param – norm

penalty on representation

e.g. L1 penalty

(Goodfellow 2016)

Label Smoothing

• Many datasets have some mistakes in labels y

• Inject noise in labels at output
• Assume label is correct with probability 1-e (for some small e)

• Otherwise any other label is assigned

• Can incorporate this into cost function analytically

• Label smoothing regularizes model based on softmax
• Replaces hard assignment with 1-e and e/(k-1) ; for k labels

• Can use standard cross-entropy loss with soft targets

Define the convolution of filter f on image I as:

𝐼 ∗ 𝑓 𝑥 = ෍

𝑚

෍

𝑛

𝐼 𝑥 − 𝑚, 𝑦 − 𝑛 𝑓(𝑚, 𝑛)

Convolution: Some Intuition

141

Many ML libraries actually implement cross-correlation:

𝑓 ∗ 𝐼 𝑥 = ෍

𝑚

෍

𝑛

 𝐼 𝑥 + 𝑚, 𝑦 + 𝑛 𝑓(𝑚, 𝑛)

Learning finds good values for the convolution filter…

VGGNet (2014): 7.3% error on ImageNet

142

• Mimic large convolutional filters with multiple small (3x3) convolutional filters

• Every time it halves the spatial size, double the # of filters

slide from Stanford CS231n[Simonyan and Zisserman, 2014]

1D transposed convolution: matrix form

143(fig from Stanford cs231n)

	Slide 1: CSC 480/580: Principles of Machine Learning
	Slide 2: Basis Functions
	Slide 3: Learning Basis Functions
	Slide 4: Neural Networks
	Slide 5: Neural Networks
	Slide 6: Rosenblatt’s Perceptron
	Slide 7: Rosenblatt’s Perceptron
	Slide 8: Multilayer Perceptron
	Slide 9: Modern Neural Networks
	Slide 10: Handwritten Digit Classification
	Slide 11: Multilayer Perceptron for MNIST Classification
	Slide 12: Feedforward Procedure
	Slide 13: Nonlinear Activation functions
	Slide 14: Multilayer Perceptron
	Slide 15
	Slide 16: Reading quiz
	Slide 17: Training Multilayer Perceptron
	Slide 18: Training Multilayer Perceptron
	Slide 19: Training Multilayer Perceptron: for classification
	Slide 20: Training Multilayer Perceptron
	Slide 21: Learning algorithm intuition
	Slide 22: Training Multilayer Perceptron
	Slide 23: Gradient descent (GD)
	Slide 24: Gradient descent: example
	Slide 25: GD: remarks
	Slide 26: Stochastic gradient descent (SGD)
	Slide 27: Stochastic gradient descent (SGD)
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Computing the Derivative
	Slide 42: Backpropagation
	Slide 43: Key conceptual tool: Computation graph
	Slide 44: Key tool: Computation graph
	Slide 45: Chain rule in computation graphs: an example
	Slide 46: Backpropagation
	Slide 47: Vanishing / exploding gradient problems
	Slide 48: Expressive power of neural networks
	Slide 49
	Slide 50: Regularization
	Slide 51: L2 Regularization
	Slide 52: L2 Regularization (Weight Decay)
	Slide 53: Regularization : Weight Decay
	Slide 54: L1 Regularization
	Slide 55: Parameter Tying / Sharing
	Slide 56: Dataset Augmentation
	Slide 57: Dataset Augmentation
	Slide 58: Dataset Augmentation
	Slide 59: Learning Curves – Early Stopping
	Slide 60
	Slide 61: Early Stopping
	Slide 62: Regularization
	Slide 63: Dropout (Srivastava et al, 2014)
	Slide 64: Dropout
	Slide 65: Batch normalization (Ioffe and Szegedy, 2015)
	Slide 66: Batch normalization layer
	Slide 67: Batch normalization layer
	Slide 68: Batch normalization
	Slide 69: Example
	Slide 70
	Slide 71: Scikit-Learn : Multilayer Perceptron
	Slide 72: Scikit-Learn : Multilayer Perceptron
	Slide 73
	Slide 74: NNs for images
	Slide 75: NNs for images
	Slide 76: Convolutional neural networks (CNN)
	Slide 77: Convolution for single-channel images
	Slide 78: Convolution: Some Intuition
	Slide 79: Convolutional layer for multi-channel images
	Slide 80: Convolutional layer: multichannel images
	Slide 81: Convolutional layers act as feature extractors
	Slide 82: Convolutional Layers beyond the First Layer
	Slide 83: Convolutional Layer: More Details
	Slide 84: Example: P=1, S=1
	Slide 85: Example: P=1, different strides in height & width
	Slide 86: Convolutional Layer: More Details
	Slide 87: Strides and padding: animations
	Slide 88: Convolutional Layer: Summary
	Slide 89: Final project report
	Slide 90: Convolutional Layer: Summary
	Slide 91: Comparison: FC vs Conv
	Slide 92: Case study: first layer of AlexNet (Krizhevsky et al ’12)
	Slide 93: Pooling layer
	Slide 94: Typical architectural patterns in CNN
	Slide 95: Seeing what happens in CNN
	Slide 96
	Slide 97: LeNet-5
	Slide 98: LeNet-5
	Slide 99: AlexNet (2012)
	Slide 100: VGGNet (2014): 7.3% error on ImageNet
	Slide 101: ResNet (2016): 3.5% error on ImageNet
	Slide 102
	Slide 103: Deep nets seem to suffer
	Slide 104
	Slide 105: Key idea: skip connections
	Slide 106: ResNet
	Slide 107: ResNet in PyTorch
	Slide 108: ImageNet nowadays
	Slide 109
	Slide 110: Unsupervised Learning Review
	Slide 111: Introductory Example
	Slide 112: Early Observations
	Slide 113: Autoencoder using deep networks
	Slide 114: PCA as a linear autoencoder
	Slide 115: PCA as a linear autoencoder
	Slide 116: Autoencoder using deep networks
	Slide 117: Training autoencoders
	Slide 118: Autoencoder for images
	Slide 119: “Un”pooling
	Slide 120: Max unpooling
	Slide 121: Transposed convolution
	Slide 122: Transposed convolution
	Slide 123: 1D transposed convolution
	Slide 124: Decoders: additional remarks
	Slide 125: Samples from fully-connected decoders
	Slide 126: Samples from convolutional decoders
	Slide 127: Autoencoders: more usages
	Slide 128: Learned ‘code’ is interpretable
	Slide 129: Learned ‘codes’ is interpretable
	Slide 130: Resources
	Slide 131: Backup
	Slide 132: Multilayer Perceptron
	Slide 133: Backpropagation
	Slide 134: Computing the Derivative
	Slide 135: Derivative Chain Rule
	Slide 136: Backpropagation
	Slide 137: Backpropagation
	Slide 138: L1 Regularization
	Slide 139: Sparse Representations
	Slide 140: Label Smoothing
	Slide 141: Convolution: Some Intuition
	Slide 142: VGGNet (2014): 7.3% error on ImageNet
	Slide 143: 1D transposed convolution: matrix form

