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Basis Functions

Basis functions transform linear models into nonlinear ones...

Classification

Linear Regression ( Logistic Regression)
y=wlz y = o(w!x)
y =w' ¢() y =o(w’ ¢(x))

...but it is often difficult to find a good basis transformation



Learning Basis Functions

What if we could learn a basis function so that a simple linear
model performs well...
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Ignore the circled points...I
reused these from the SVM slides

...this is essentially what standard neural networks do...



Neural Networks

 Flexible nonlinear transformations of data
» Resulting transformation is easily fit with a linear model
* Relatively efficient learning procedure scales to massive data

* Apply to many Machine Learning / Data Science problems
* Regression
* Classification
« Dimensionality reduction
« Function approximation
« Many application-specific problems




Neural Networks

Forms of NNs are used all over the place nowadays...

ChatGPT
Al Chat Bots Self- Drlvmg Cars
— Machine Translation
Hello world! X jHola Mundo! 2, w

D) 12/ 5000 v L D] oDz <

Send feedback



Rosenblatt's Perceptron

Despite recent attention, In 1957 Frank Rosenblatt constructed

neural networks are fairly old the first (single layer) neural network
kKnown as a “perceptron’

perceptron
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He demonstrated that it is capable of
recognizing characters projected onto a
20x20 “pixel” array of photosensors




Rosenblatt's Perceptron

FIG. 1 — Organization of a biological brain. (Red areas indicate
active cells, responding to the letter X.)
Perceptron
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FIG. 2 — Organization of a perceptron.

In Rosenblatt’s perceptron, the inputs are tied directly to output

“Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics” (1962)

Criticized by Marvin Minsky in book “Perceptrons” since can only learn linearly-separable functions
The perceptron is just linear classification in disguise



Multilayer Perceptron

Hidden layer
perceptrons
Input layer : :
perceptrons _l l Adding hidden layers
allows NN to learn

pitrary functions

output

This Is the quintessential Neural Network...
...also called Feed Forward Neural Net or Artificial Neural Net

[ Source: http://neuralnetworksanddeeplearning.com |



http://neuralnetworksanddeeplearning.com/

Modern Deep Neural networks have many hidden layers

Modern Neural Networks
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...and have many trillions of parameters to learn

[ Source: Krizhevsky et al. (NIPS 2012) |
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Handwritten Digit Classification

Classifying handwritten digits is the "Hello World” of NNs

O Hl (/7] [g] A 1] 3 [1] 4] 3 Each character is centered
1 3 (@] [1] 7] [H [#] [6] [§] M In a 28x28=784 pixel
0 7]/ A 2 [¥] 3B 2] [7] ® grayscale image
L 670 516 [0 = [6 ]
gl (7] 7] 3B 9] 18] 1s] Q] 3] 1S
0RFAH 2078/
# 6l & 4 A&l 7] Q@ 1
ZI 1] [&]l 3] 18] 2 [/] 2] [Z] [
g 867 5 g 0«6
2] 4] (6] [2] 0] (7] [ 3] [Z] 3]
Modified National Institute of
Standards and Technology

(MNIST) database contains 60k
training and 10k test images
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https://www.youtube.com/watch?v=aircAruvnKk

Feedforward Procedure

Each node computes a
weighted combination of nodes
at the previous layer...

W1T1 + W22 + ... + Wnpy

Then applies a nonlinear
function to the result

o(wix1 +woxs + ...+ wpxy, + b)

Often, we also introduce /

a constant bias parameter




Nonlinear Activation functions

We call this an activation function and typically write it in vector form,
b) = o(w! z +b)

a(wlazl Woxo + ...+ WnpTy

An early choice was the logistic function,

1
1 4+ e—(whz+b)

o(wlz +b) =

Later found to lead to slow learning and the
rectified linear unit (ReLU) become popular,

o(w!z +b) = max(0,w! z + b)

j
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Nonlinearities

1 =—— ReLU
GELU




Multilayer Perceptron

Final layer Is typically a linear
model... each output node is
computed by

1
O-(’IUT;C -+ b) — | n 6—(wT;U—|—b)

\ Vector of activations from

previous layer

Recall that for binary logistic
regression with 2 classes,

p(Class = 1| z) < o(w’ z + b)




[ Source : 3BluelBrown :

784 x164+16x16 4+ 16x10

weights

16 +16 + 10
biases

13,002

Each parameter has some impact
on the output...need to tweak
(learn) all parameters
simultaneously to improve
prediction accuracy

784



https://www.youtube.com/watch?v=aircAruvnKk

Reading quiz

* https://cs231n.github.io/optimization-1/

* New concepts

« Optimization methods:
 random search,
 random local search,

« Cf. gradient descent

* Gradient check: use slow & easy numerical gradient to check the
correctness of implementation of fast & error prone analytical
gradient

df(z) _ . fe+h) - f) » "

l <

dx h —0 h

 Effect of step size

4

O


https://cs231n.github.io/optimization-1/

Training Multilayer Perceptron

For each training example,
predict label and adjust
weights...
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 How to score final layer output?

« How to adjust weights?




Training Multilayer Perceptron

One way to score (square loss): based on difference between final layer
and one-hot vector of true class... £;(6) = X ;(f;(x;; 6) — yj)2
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[ Source : 3BluelBrown : https://www.youtube.com/watch?v=aircAruvnKKkK ]



https://www.youtube.com/watch?v=aircAruvnKk

Training Multilayer Perceptron: for classification

* For classification, it is most popular to use:  oue _ sofma e

A softmax layer as final output "137 0.07
efc 5.1 esi 0.90
a(f) - ~c=1,..,K )5
25y el) | 0.7
probability estlmate of each class given example |[11]

« Cross-entropy loss for training

[(ﬁ’ y) = log (i> E.g.y=24(p, y)—log@
Dy

(if [ represents one-hot encoding of label, often
written as ),. [, log (—))

measures the “surprise” of label being y based
on current belief



Training Multilayer Perceptron

Our loss function for i example is error in terms of weights / biases...

EZ(Q), 0 = (wl,...,wn,bl,...,bn)

\ J
Y

13,002 Parameters
in this network

..minimize loss over all training data...

m@m L(6 Z 0 (
Thisis a super high- dlmensmnal optlmlzatlon (13,002
dimensions in this example)...how do we solve it?

Gradient descent!



Learning algorithm intuition

* Gradient descent: Move In direction of greatest local
improvement (greedily)

* “Knob turning”

* ’knob” = weight of an edge

* If a neuron increases the probabillity of an incorrect prediction, its
knobs will be turned down.

* If a neuron increases the probability of a correct prediction, its knobs
will be turned up.



Training Multilayer Perceptron

Need to find local / global optimal solution...

Convex Cost Function Non-convex Cost Function High-Dimensional Non-convex

" f(z) = a sin (x*) + 1
A = (=225

‘-ﬁ\A (—2,2.51)

2_

-2

Easy! Hard!

Actually, the situation is much worse, since the cost is super
13,002(high)-dimensional...but we proceed as is...



Gradient descent (GD)

eFort = 1,..T: Ht+1 — Ht — CZVL(Ht)

0L 0L
° VL(Q) — (%, 1 50(d)

) IS the gradient of £ at point 8

* Intuition: VL(6) / —V.L(8) points to the direction

In which L increase / decreases the most
* GD provides local improvement on L

» Special case (linear fn): £(0) = x'@




Gradient descent: example

4

20 AN

VL(O) = (6(1), 46(2)) )

« Example: L(0) = %(9(1)2 + 40(2)%)

-10 0 10
X1

(o) = (6.0) <) = (o) == (G {Eiféféﬁ)

» When « is small, 8, - (0,0) - global minimizer of £ """~

https://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf



GD: remarks

* Does not promise to converge to global optima

h(q1,q2)

* [n practice, people use it (or its variants) anyways and it
performs well

* This is especially true in training neural networks



Stochastic gradient descent (SGD)

» Using GD to optimize training loss £(8) can be expensive!
 Full gradient VL(8) = %Z’{’;l V¢;(0), which takes O(m) time to evaluate

* To reduce computational cost: use instead
Ot11 < 0 — agy,
where g; Is an unbiased estimate of V.L(6;)

* One choice: g; = V¥; (8;), where i; ~ Uniform({1, ..., m})
* Only one gradient evaluation! | _
. Well-established convergence guarantees I



Stochastic gradient descent (SGD)

* Claim: g, = V¢;,(0;), where i; ~ Uniform({1, ..., m}) is an unbiased
estimate of VL(Ht)

« Justification: E[g;] = Xi%, P(i; = i) V£;(08;) (defn of expectation)

= — 37, V€,(6y) (PMF of i,)
=V (% ity fi(et)) (linearity of derivative)
= VL(6;)

» Extension (Mini-batch SG): g; = %Ziest Ve;(6;) (S;Isarandom
size-k subset of {1, ..., m}) Is also an unbiased estimate



Deep learning, a field of machine learning

T 0] v
HA"@ ba... *QP e
- EF’?-*-.JM (3 Learning algorithm

SECEr .&g}ﬁj‘: (backpropagation)

28



Deep learning with backpropagation

Input neurons Output neurons

AS



Deep learning with backpropagation




Deep learning with backpropagation

31



Deep learning with backpropagation




Deep learning with backpropagation

33



Deep learning with backpropagation

Decrease signal on "synapses”
that fired incorrectly!

34



Deep learning with backpropagation

Increase signal on "synapses”
that did not fire sufficiently!

K15)



Algorithm 7: Stochastic gradient descent algorithm for the training of neural

networks.

1

2
3
4
5
6
7
8

initialize parameters in ©

while not converged do

0=0—«

end

end

end

d
de

Gi(©)

for each training example x; in X do
for each © in © do

atochastic Gradienl Descent

Gradient Descent

36



Algorithm 7: Stochastic gradient descent algorithm for the training of neural

networks.

1 initialize parameters i m

2 while not converged do

3 for each training example
for each © in © do
0=0—0%C(O)

end

Collection of all
weights and biases in
the network

end

o N & O s

end




Algorithm 7: Stochastic gradient descent algorithm for the training of neural

networks.

1 initialize parameters in ©

2 while not converged do

3

o N & O s

0=0—«

end

end

end

d
de

Gi(©)

for each training exampld x; in X do
for each © in © do

One training example J

38



Algorithm 7: Stochastic gradient descent algorithm for the training of neural

networks.

1

2
3

o N & O s

initialize parameters in ©

while not converged do

for each 6 in © do
0=0—¢ %Cl(@)

end

end

end

\_

for each training example x; in X do

Partial derivative of the cost
function C for each
parameter (weight or bias) in
the network

\

)

39



Algorithm 7: Stochastic gradient descent algorithm for the training of neural

networks.

1 initialize parameters in ©

2 while not converged do

3 for each training example x; in X do
a for each 6 _in © do

5 | 6=06 E%C"(@)

6 end

7 end

8 end

N
Learning rate, which
IS a hyper parameter




Computing the Derivative

So we need to compute derivatives of a super complicated
function...

* Tells us how much to turn the “tuning knob” (i.e. weight)

* But how do we compute derivatives for edge weights not directly
connected to the output layer?

« Key technique: Backpropagation



Backpropagation
[ Source : 3BluelBrown : https://www.youtube.com/watch?v=aircAruvnKKk ]
Activation at final layer involves
weighted combination of
activations at previous layer...

2n = 0(Whnzn_1)

Which involves a weighted
combination of the layer before
it...

An—1 = J(Wn—lzn—Q)
And so on...
2n = 0o(Wpo(Wy,_10(...)))



https://www.youtube.com/watch?v=aircAruvnKk

Key conceptual tool: Computation graph

* A DAG that describes the order of computation in a general
computational process
* Nodes: variables W, W Wny Wi
° . I \) \ > N
Edges: dependency of the variables ot %4{1_) o A A
* fi=Fi(Wy,x), ., fo = EE(Wy, fn1)

* Has more general application beyond training neural networks
* Differentiable physics simulation engine (Hu et al 2020)

* Differentiable ray-tracing (e.g. Yang et al 2022) = §
* ICML workshops on “differentiable almost everything” 0@
https://differentiable.xyz/ OX | i




Key tool: Computation graph

« Sometimes useful to highlight the operation that computes
each variable as well

'E.g.q=Fq(x,y)=x+y;f=Ff(q,Z)=q-Z

X -2

+
4
y 5

-4 f -12

z -4
3

 Backpropagation is the procedure of repeatedly applying the
derivative chain rule to compute the full derivative




Chain rule in computation graphs: an example

X -2
cq=F0y)=x+y,f=F(qz)=qz i_:>(in
* Representing function F(x,y,z) = (x+y)-z v _54

of of 6f),) ,
ox’ dy’ dz) " 3
. If node u is changed by 1 unit independently, how much

« How to calculate VF = (
ov

* Interpretation of -

does v change?

 Using reverse topological order, go over all variables in the graph
L=y L3

oq ' 0z

of of 0q
®® — = — ¢ — _4_

dox 0q O0x : node values
. a_f _ a_f _ a_q — _4 red: derivatives

dy 0q 0y

figure from Stanford cs231n



Backpropagation

* |n practice, neural network implementations use auto
differentiation to compute the derivative on-the-fly

» Can do this efficiently on graphical processing units (GPUS)
on extremely large training datasets

(Taken from Matus Telgarsky’s deep learning
lecture: https://mjt.cs.illinois.edu/ml/lec8.pdf)




Vanishing / exploding gradient problems

: . 0 :
« Experimental observation: a_v];- for w; In closer-to-
l

Input layers are more likely to be tiny (vanishing) /
huge (exploding), leading to problematic updates

* We'll see NN designs that mitigates this

EXPLODING VANISKHING

GRADIENT GRADIENT
I |" + 0 | |4'\

f
N IS )
= —
o ; 3
2~ . .2.;)
L < X
~ a & .
’ t > ——
I 5




Expressive power of neural networks

* (Cybenko, 1989; Hornik et al, 1989)

Theorem 10 (Two-Layer Networks are Universal Function Approx-
imators). Let F be a continuous function on a bounded subset of D-
dimensional space. Then there exists a two-layer neural network F with a
finite number of hidden units that approximate F arbitrarily well. Namely,

for all x in the domain of F, |F(x) — ﬁ{:&:)‘ < €.

* Does this mean that there is no benefit in learning deeper
networks? No..

The Power of Depth for Feedforward Neural Networks

Ronen Eldan, Ohad Shamir

We show that there is a simple (approximately radial) function on $\reals*d$ , expressible by a small 3-layer feedforward neural networks, which cannot be approximated by any 2-layer network, to
more than a certain constant accuracy, unless its width is exponential in the dimension. The result holds for virtually all known activation functions. including rectified linear units. sigmoids and

Benefits of depth in neural networks
Matus Telgarsky

For any positive integer k, there exist neural networks with 'E){k?’) layers, ©(1) nodes per layer, and ©(1) distinct parameters which can not be approximated by networks with O(k) layers unless
they are exponentially large --- they must possess Q(2‘"’) nodes. This result is proved here for a class of nodes termed "semi-algebraic gates" which includes the common choices of ReLU, maximum,



Regularization



Regularization

With four parameters | can fit an elephant. With five |
can make him wiggle his trunk. - John von Neumann

w = arg min Cost(w) + « - Regularizer(Model)

w

Our example model has 13,002
parameters...that's a lot of elephants! e | o

Regularization is useful... v
...numerous regularization schemes :

are used In training neural networks




L2 Reqularization

Formalize the regularized cost function as,

J(0; X,y) = J(0; X,y) + a(8)
Consider an L2 penalty,
T(w; X,y) = 5w w+ J(w; X,y)
Gradient (derivative) with respect to w Is given by,
Vd(w; X,y) = aw + Ve J(w; X, y)
Take a single step in the direction of the gradient,

w— w — €(aw + VyJ(w; X, y))



L2 Regularization (Weight Decay)

Written another way, a single gradient step Is:

W — (]_—EEE)’I'.U —f?w.I(W;Xay)

Learning Rate T T Regularization
(how big of a step) Strength (Coefficient)

« Can see this is a modification to the learning rule (gradient descent)
 “Shrinks” the weight by constant factor on each step
* Then perform usual gradient step



Regularization : Weight Decay

w = arg min Cost(w) + %H’LUHQ

alpha 0.10 alpha 0.32 alpha 1.00 alpha 3.16 alpha 10.00

alpha 3.16 alpha 10.00

alpha 3.16




L1 Regqularization

~

J(w) = J(w) + aflw|y
(Sub-)gradient given by,

Vd (w; X, y) = asign(w) + Vo, J (X, y; w)

 Very different effect from L2 weight decay

« Reqgularization contribution no longer scales linearly with each w

« Constant addition with sign equal to sign(w)

* Has a sparsity-inducing property (encourages some weights to be 0)



Parameter Tying / Sharing

* Introduces inductive bias
* There should be dependencies among parameters
 Parameters should be close / similar

« Hard constraints force sets of parameters to be equal
 Known as parameter sharing
* Only subset of unique parameters needs to be stored in memory

« Example: convolutional neural network (we will discuss in detall)

(Goodfellow 2016)



Dataset Augmentation

 Train on more data (always more data)

* What if we don’'t have more data? (Make up more)
 Easiest for classification

» Generate new (X,y) pairs by transforming an existing (x,y)

 Particularly effective for object recognition
« Translation
« Scaling
« Rotation

(Goodfellow 2016)



Dataset Augmentation

Affine Distortion Noise Elastic Deformation

v

Random Translation Hue Shift

(Goodfellow 2016)



Dataset Augmentation

* Need to avoid transformations that change class
* For example mirror “b” to produce “d”
» Rotation turns “6” into “9”

« Some transformations are not easy to perform, e.g. out-of-
plane rotation



Loss (negative log-likelihood)

Learning Curves — Early Stopping

Early stopping: terminate when validation set
performance stops improving

0.20 //

0 90

Training set loss
Validation set loss |-

100 150
Time (epochs)

Figure 7.3

200 250

(Goodfellow 2016)



Algorithm 7.1 The early stopping meta-algorithm for determining the best
amount of time to train. This meta-algorithm is a general strategy that works
well with a variety of training algorithms and ways of quantifying error on the
validation set.

Let n be the number of steps between evaluations.

Let p be the “patience,” the number of times to observe worsening validation set
error before giving up.

Let 8, be the initial parameters.
00,
1+ 0
70
V 4 00
0" — 0
i =1
while j < p do
Update 8 by running the training algorithm for n steps.
14 1+m
v’ « ValidationSetError(8)
if v/ < v then
740
0 <0
it 4
v+ o

else
1 7+1

end if
end while
Best parameters are 8*, best number of training steps is ¢*.

(Goodfellow 2016)



Early Stopping

* Think of it as efficient hyperparameter selection algorithm
(hyperparameter = number of training steps)

* Requires almost no change to underlying training procedure
« Contrast with weight decay that requires hyperparameter tuning

(Goodfellow 2016)



Regularization
» L1+L2 (elastic net) reqgularization

« Data Augmentation Synthetically expand training data by
applying random transformations

* Early stopping Just as it sounds...stop the network before
reaching a local minimum...simple-but-effective

* Dropout Each iteration randomly selects a small number of
edges to temporarily exclude from the network (weights=0)



Dropout (Srivastava et al, 2014)

Each time we load a minibatch to perform
updates:

- randomly remove set of nodes (& associated
edges)
- do updates on the remaining network

Includes input and hidden nodes — typically
different probabilities of dropping each

Figure 7.6
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(Goodfellow 2016)




Dropout

 Srivastava et al. (2014) showed more effective than weight decay and
other “simple” regularization methods

« Computationally very cheap
» Doesn’t significantly limit type of model that can be used

« Can slow training and require larger model sizes
* Less effective when very few training examples available

(Goodfellow 2016)



Batch normalization (loffe and Szegedy, 2015)

11111

* Fact: optimization Is easier when the inputs of
each layer is within constant interval, say [-2,2]

« Can we “enforce” this by modifying the NN's T
design?

» Key idea: Let's add a layer that normalizes (i.e.,
standardizes) the inputs!

 Recall minibatch SGD

« Computes gradients for k data points, then updates
the weights.

« Can we ensure that within a batch, for a layer, most of
the inputs are “standardized™?



Batch normalization layer

« Example: neural network making Te ™=
predictions on a batch of M=3 coer i
examples with batch normalization :\ . G Nl

\

12
S Output
3 \UPU
=
® ®
—
®
o o
c
—~
o
=
—~
wvi

Using all examples from

the batch to normalize the activations
Irit/ § i l/ ’ S § \f)mpm

5 | 5 )

Example 3 ® 3 = o




Batch normalization layer

« Example: neural network making predictions on a batch of
M=3 examples with batch normalization

Input: Values of x over a mini-batch: B = {z1_ ., };
Parameters to be learned: ~,
Output: {y; = BN, g(z;)}

1 « .
1R — — Z T; // mini-batch mean
s
o — E i(m — u5)? // mini-batch variance
om i=1 Z
T; i HB // normalize
\VOo§ +€
Yi < vZ; + B = BN, 5(x;) // scale and shift

Batch Norm
Features ﬁean and Std Dev . "ionnalize : ‘ ;"S"cale and Shift \ Features
a ! o Features - Features -f | @
_'i l e p———— - “"T.;E—’ | _5‘:.
H i —>| i [_ ,! AT e | j—» 7 FER PN I =
@ g | o, Py . =8 1 e v
A - A | o, o':' g ) \ . A' I.\ /’\ 1;'\.‘
‘ ﬁovlng Avaué; :
F
§aaties B
Pmov; [ ]
. Prveeey
T mov; i ]

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692%39
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. loffe, Szegedy. ICML 2015



Batch normalization

* One twist for the test time
* The network is now well-trained to predict batches of M test examples
« What if we want to use the network to predict a single test example x?
- Use (averaged) ug and o3 computed in training time

* Why does batch normalization help?

 (Santurkar et al, 2018): it helps making the NN optimization landscape
smoother

» Popular variants: layer normalization (Ba et al, 2016)
« widely used in transformer/ LLMs



Example

Play with a small multilayer perceptron on a
binary classification task...

https://playground.tensorflow.org/



https://playground.tensorflow.org/

sklearn.neural_network.MLPClassifier

hidden_layer sizes : tuple, length = n_layers - 2, default=(100,)
The ith element represents the number of neurons in the ith hidden layer.

activation : {"identity’, ‘logistic’, ‘tanh’, ‘relu’}, default="relu’

Activation function for the hidden layer.

solver : {'lbfgs’, 'sgd’, ‘adam’}, default="adam’
The solver for weight optimization.

alpha : float, default=0.0001
L2 penalty (regularization term) parameter.

learning_rate : {‘constant’, ‘invscaling’, ‘adaptive’}, default='constant’

Learning rate schedule for weight updates.

early stopping : bool, default=False
Whether to use early stopping to terminate training when validation score is not improving. If set to true,



Scikit-Learn : Multilayer Perceptron

Fetch MNIST data from www.openml.orqg :

X, y = fetch _openml("mnist_784", version=1, return_X_y=True)
X =X/ 255.0

Train test split (60k / 10Kk),

X_train, X_test
y_train, y_test

X[:60000], X[60000: ]
y[:60000], y[60860:]

Create MLP classifier instance,  mip = MLPClassifier(

hidden_layer_sizes=(59,),

 Single hidden layer (50 nodes) max_iter=10,
- Use stochastic gradient descent I

« Maximum of 10 learning iterations verbose=16,

random_state=1,

« Small L2 regularization alpha=1e-4 learning_rate_init=0.1,


http://www.openml.org/

Scikit-Learn : Multilayer Perceptron

Iteration 1, loss = ©.32009978
. . Iteration 2, loss = ©.15347534
Fit the MLP and print accuracy... et B T & e
Iteration 4, loss = ©.89279764
mlp.-Fit(}{ train, y train} Iteration 5, loss = ©.87889367
- - Iteration 6, loss = ©.87178497
print(“"Training set score: %f" % mlp.score(X_train, y_train)) Iteration 7, loss = ©.06282111
print("Test set score: %" % mlp.score(X test, y test)) Iteration 8, loss = 9.05530783
Iteration 9, loss = ©.84968484
Iteration 10, loss = ©.84645355
. . . Training set score: ©.986800
Visualize the WelghtS for each node... Test set score: ©.970000

vmin, vmax = mlp.coefs [0].min(), mlp.coefs [0].max()
for coef, ax in zip(mlp.coefs [0].T, axes.ravel()):
ax.matshow{coef.reshape(2§, 28), cmap=plt.cm.gray,
kmin=0.5 * ymin, vmax=0.5 * wvmax)
ax.set xticks(())
ax.set yticks(())

...magnitude of weights indicates which
Input features are important in prediction




Convolutional Neural Networks



NNs for images

* FCs can learn (pattern, location) combinations in images

* The learned patterns do not generalize to different spatial locations.

Neuron 1: detects faces around (124, 236)

Neuron 2: detects flowers around (34, 301)

N0 ‘ _ "
@
@

a1+
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NNs for Iimages

« Can we learn a group of neurons that detect a certain pattern (e.g.
existence of a wheel) at all locations?

* low level: edge of some orientation, a patch of some color
* high level: shape of a wheel, face

* Encodes inductive bias
 Image classification: semantic of an image should be
translation-invariant
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Convolutional neural networks (CNN)

 A.K.A. ConvNet architecture

« A set of neural network architecture that consists of
« convolutional layers
 pooling layers
* fully-connected (FC) layers

RELU RELU ELU RELU RELU RELU
CONV |CONV CONVlCONVl

-—
e

— &l - -
C -
.l -

| e | -
Sl -
IRl - -
= | i
7:2‘ = -
=&l -

|

|

(Stanford CS231n) 70



Convolution for single-channel images

Consider one filter with weights {w; ;} with size F x F

* For every F x F region of the image, perform inner product (= element wise
product, then sum them all)

* Q: given aw X h image, after convolution with a F x F filter, what is the size of
the resulting image?

« Terminologies: filter size, receptive field size, kernel.

........

o[1 (1 [ETeal ..
ofof1fadatolo-... ... 11413141
olojofjr)rf1]o] 1{o]1 1[21413]3
olofo[T{sL0o|07x_ 1 ="1149]3]4]1
0]0|1]{1]{0]0[0... 1|01 1(3[3]1]1
o|1]1]o]ofo]o 3[3]1]1]0
1|{1]{ofo]ofo]o]

Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning 7



https://arxiv.org/abs/1603.07285

Convolution: Some Intuition

Define the convolution of filter f on image | as:

(F=DG)= ) D 1Gc+m,y+n) fmn)

In signal processing, people use another convention for defining
convolution:

(F+DE) = ) ) 16 =m,y = m)f(m,n)

A good filter detects interesting patterns in images
Learning finds good values for the convolution filter...
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Convolutional layer for multi-channel images

Input: w (width) x h (height) x ¢ (#channels)

3 channels: R, G, and B

+E.g. 32X 32x 3 /32

N
—=0 0000
A convolutional filter on such image is of
shape FxF xc /32
* Only spatial structure in the first two a
dimensions

* Denoted by { }

iImage from Stanford CS231n




Convolutional layer: multichannel images

» Consider one filter with weights { Jwith 5 x5 x 3

 Imagine a sliding 3D window.

 Convolution: For every 5 x 5 region of the image, perform inner product (= element wise
product, then sum them all)

« Then apply the activation function (e.g., ReLU)
* Results in 28 x 28 x 1 — called activation map.

* Now, we can do K of these filters but with different weights {Wi(j,)k} for ¢ € [K] =>
output is 28 x 28 X K

0|1 (1| THO40] 07 _

/32 ofo|1]aJafo] Ot . 1]413]4]1

- olofojafr)1]fo 1{0]1 1]2{4/3]3

@;>SOOOO 0]o[0[TT+{0]|07~* |o[1[0] ="[1{2]3]4]1

ofo|1][1]ofo]Ot. [1]0]1 113[3]1]1

_A o[1]1]o]ofo]o| | 3[3|1]|1]0
3 111loTololTolo filter weights

(image from https://www.quora.com/Why-do-we-use-convolutional-layer§f)



Convolutional layers act as feature extractors

A

« Example filters learned at the first conv layer [E§>OOOO<)
- Each filter has size 11x11x3 a
« Many filters look like edge detectors %

w |

image from Stanford CS231n 8l




Convolutional Layers beyond the First Layer

Generalization: conv layer as the 2" |ayer or more

* Input volume (3d object with size w x h x d):
* the d (called depth) is not necessarily 3

* Output volume: size w’ x h’ x d’, where d’ is the number of filters at the
current layer.

Interpretation: patterns over the patterns.

 Each filter now convolves and combines d’
activation maps for each spatial location.

 e.g., combinations of particular edges and textures 3

OO000P

L\
i




Convolutional Layer: More Detalls

Stride length S
« Skip input regions; Move the sliding window of a filter not by 1 but by S.
* E.9., S=2 means skipping every other 5 by 5 region.

Zero-padding P: add P number of artificial pixels

with value 0 around the input image on both sides

* E.9. given a 28 x 28 image, P=1 => pad it to a 30 x 30 image

« To ensure the spatial dimension is maintained

(otherwise, patterns at the corners are not detected well)

image from https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7
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Example: P=1, S=1
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image from https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7



Example: P=1, different strides in height & width

Shelght 3, SWldth = 2

Input Kernel Qutput
i e St St Bl
0y 0s030570;
R B e ey AR
oiol1]z2]o:
o] ] o1 -
ol 3|4]|5)0! * =
e ] 21 3 6| 8
AR I I -
I.—-..—-..-.. e
[}:[}:D:D:D‘



Convolutional Layer: More Detalls

Stride length S

 Skip input regions; Move the sliding window of a filter not by 1 but by S.

Zero-padding P: add P number of artificial pixels with value 0

iInput image on both sizes

Dimension Rules (same goes for
« W: input volume , F:filter

* The output {W_TZP‘H

« E.g.,, W=32,F=5,P=0,5S=1 => K=28
« E.g., W=32,F=5,P=2,5=1 => K=32

(usually, the filter has the same width and height)



Strides and padding: animations

Strides only Padding only Strides + Padding

Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning
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https://arxiv.org/abs/1603.07285

Convolutional Layer: Summary
Input W; X Hy X D; (width, height, depth)

Hyperparameters # of filters K, filter size (=width=height) F, stride S,
zero-padding P

Output W, x H, X D, |
W, = {Wl‘gm‘ +1, @§>ooooo
H, = {H1—§+2P +1
D, =K /32

&

More terminology: depth slice (W by H by 1), depth column (1 by 1 by D)




Final project report

* Credits will be given when you make and document your
honest trials

* If you failed to implement something, please explain what you
have done to find an answer and where you get stuck.
« DON'T: ”l don’t know how to implement X"

* DO: “l read material A, and there is this package B that seems to
help, but when | tried to apply, C became an issue. ..."



Convolutional Layer: Summary
Input W; X Hy X D; (width, height, depth)

Hyperparameters # of filters K, filter size (=width=height) F, stride S,
zero-padding P

Output W, x H, X D, /32 |
W, = {Wl‘gm‘ +1, @;>OOOOO
H, = {H1—§+2P +1
D, =K /@

w |




Comparison: FC vs Conv

« Conv layer allows parsimonious representations:
* Inter-layer connections are local
* parameter Is shared across spatial locations.
* Imposing inductive bias specialized for images

01| 1T840 07 - 7 N7\
0/0|1 BEFEROY 0. "~ r1413]4]1 “
olofofLf1f1]o 1{0]1 1[214{3]3 - X
P Y , ®» Kl (D)
olofo[T]+]o [0} [o]1]o] = [1}2]3]4]1 PP
olof1]1(0]|O[O .. 11]of1 11313]1]1 N XORR,
o|1[1|o]ofo]o 3|3[1]1]o0 ® @
1{1]0]{0[0f0]O W/ \W/



Case study: first layer of AlexNet (Krizhevsky et al '12)

Input: 227x227x3, and the first conv layer output is 55x55x96 (96 filters)
« Each filter has 11*11*3 weights with 1 bias => 364 parameters
« 364*96 = 34K total parameters are used to compute the output 55*55*96 = 290,400
« What if we didn’t do parameter sharing? l.e., for each location of image, use
iIndependent filter parameter w.
e #params = 290,400 * 364 = 105M
 What if we use FC to compute the same number of outputs? (the parsimony of local
connections)
» #params = 230,187 * 290,400 = 66B

0|11 |L}840])07 S
ofof1 PO ... " 1[4 341
ofofofrfr)1fo 1{o]1 1]2143]3]
0|0[0[T]+]0[07x 1{o].="1112]3[4]1
ojo[1]{1]ofo]0O}~. [1]0]1 HEIEIE
o[1{1]ofofo]o 3[3{1]1]0
1|1]ofofofo]o




Pooling layer

* The role: Summarize the input and scale down the spatial size.
 has the effect of routing the region with the most activation.

« Recall depth slice: take the matrix at a particular depth.

« Max pooling: run a particular filter that computes maximum, for each depth slice.

224x224x64

1195419x64 Single depth slice
bl [ 11]11]2]4
" max pool with 2x2 filters

SaesN 7 | 8 and stride 2 by 8
| I 3 | 2 ] 3|4

. 1 | 2

- . 112
downsampling

\
142 s

224 y

 Variation: average pooling (but not popular).

« Recommended: Filter size F=2, stride length S=2. (F=3, S=2 is also commonly used — overlapping
pooling).

« Note: There are no parameters for this layer!
figure from Stanford CS231n
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Typical architectural patterns in CNN
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Seeing what happens in CNN

 https://yosinsKi. com/dee ws#toolbox

> n2 conv3 v4 gonvd pS fc6 fc7 fe8 prob



https://yosinski.com/deepvis#toolbox

CNN examples



LeNet-5

* Proposed in “Gradient-based learning applied to document
recognition”, by Yann LeCun, Leon Bottou, Yoshua Bengio and
Patrick Haffner, in Proceedings of the IEEE, 1998

» Apply convolution on 2D images (handwritten characters) and use
backpropagation

 Structure: 2 convolutional layers (with pooling) + 3 fully connected
layers
* Input size: 32x32x1
« Convolution kernel size: 5x5
* Pooling: 2x2



LeNet-5

(depth 1) C3 f maps 16@10x10
INPUT Ei: 1ﬁﬂ-ﬂlﬂfﬂ maps S4: 1. maps 15@5:-.5
32432 @28x28 52: . maps

C5: layer pp. QUTPUT
120 o layer o

L

E—

| Full confection | Gaussian connections
Convolutions Subzampling Convoutions  Subsampling Full connection
5 by 5 filters 2x2 pooling 5 by 5 by 6 filters  2x2 pooling
K=6 stride 2 K=16 stride 2

stride 1 stride 1

98
“Gradient-based learning applied to document recognition” , by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, in Proceedings of the IEEE, 1998



AlexNet (2012)

* Won the ImageNet competition with top-5 test error rate of 16.4%
(second place was 26.2%). (1000 classes)

* Almost just an extension of LeNet-5. But uses RelLU for the first time.

LeNet AlexNet

\ Image: 28 (height) x 28 (width) x 1 (channel) } \Image: 224 (height) x 224 (width) x 3 (channels)\

[ Convolution with 5x5 kernel+2padding:28x28x6 } \ Convolution with11x11kernel+4stride:54x54x96 \

|, sigmoid J RelLu
\ Pool with 2x2 average kernel+2 stride:14x14x6 } \ Pool with 3x3 max. kernel+2 stride: 26x26x96 \
v v
\ Convolution with 5x5 kernel (no pad): 10x10x16 } \ Convolution with 5x5 kernel+2 pad:26x26x256 \
|, sigmoid v ReLu
. Pool with 2x2 average kernel+2 stride: 5x5x16 | | Pool with 3x3 max.kernel+2stride: 12x12x256 |
\ flatten !
| Dense: 120 fully connected neurons /| Convolution with 3x3 kernel+1 pad:12x12x384 |
|, sigmoid v RelLu
| Dense: 84 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x384 |
|, sigmoid | RelLu
| Dense: 10 fully connected neurons /| Convolution with 3x3 kernel+1 pad:12x12x256 |
v | RelLu
Output: 1 of 10 classes | Pool with 3x3 max.kernel+2stride:5x5x256 |
| flatten

| Dense: 4096 fully connected neurons |
v ReLu, dropout p=0.5

| Dense: 4096 fully connected neurons |
 ReLu, dropout p=0.5

\ Dense: 1000 fully connected neurons |

v

Output: 1 of 1000 classes

https://en.wikipedia.org/wiki/AlexNet
Krizhevsky, Sutskever, and Hinton, ImageNet Classification with Deep Convolutional Neural Networks, 2012.
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VGGNet (2014): 7.3% error on ImageNet

* Mimic large convolutional filters with multiple small (3x3) convolutional filters
« Amortizing memory cost: every time it halves the spatial size, double the # of filters

convl

conv2

conv3

convd

28 x 28 x 512

56 x 56 x 256

L
11/% 112 x 128

LA
224 x 224 x 64

[Simonyan and Zisserman, 2014]

14 x 14 x 512

fc6 fc7 fc8

1 % 1 x 4096

—r J

1x1x100

7x7x512

@ convolution+ReLU

@ max pooling
Eﬂ fully connected+ReLU

INPUT: [224x224x3]

memory: 224°224'3=150K params. 0

(not counting b

CONV3-64: [224x224x64] memory: 224°224°64=32M params: (3°3°3)'64 = 1,728
CONV3-64: [224x224x64] memory. 224°224°64=32M params: (3°3°64)°64 = 36,864

POOL2: [112x112xB4] memory

CONV3-128: [112x112x128] memory
CONV3-128B: [112x112x128] memory

112*112°64=800K params: 0
112°112°128=16M params: (3"3°64)"128 = 73,728
params: (3°3°128)'128 = 147 456

112°112*128=1.6M

POOL2: [56x56x128] memory. 56°56°128=400K params: 0

CONV3-256: [56x56x256] memory:
CONV3-256: [56x56x256] memory
CONV3-256: [56x56x256) memory

56°56°256=800K params:
56°56°256=B00K params.
56°56°256=600K params:

POOL2: [28x28x256) memary. 28°28°256=200K params: 0

CONV3-512; [28x28x512] memory
CONV3-512: [28x28x512] memory:
CONV3-512: [28:x28x512] memory

POOL2: [14x14x512) memary. 14

CONV3-512: [14x14x512] memory
CONV3-512: [14x14x512] memory
CONV3-512: [14x14x512] memory

28'28°512=400K params:
28"28°512=400K params:

28°28°512=400K params

14°512=100K params: 0
14*14*512=100K params.

14*14°512=100K params

14°14°512=100K params:

POOL2: [7x7x512] memaory. 7°7'512=25K params. 0
FC: [1x1x4096] memary: 4096 params; 7*7°512°4096 = 102,760 448
FC: [1x1x4096) memory: 4096 params: 4096°4096 = 16,777,216

FC: [1x1x1000] memaory

slide from Stanford CS231n

1000 params: 4096* 1000 = 4 096,000

(3°3%128)°256 = 294 912
(3"3°256)"256 = 589,824
(3"3°256)"256 = 589,824

(3°3°256)"512 = 1,179,648
(3*3°512)*512 = 2,359 206
(3°3°512)"512 = 2,359,296

(3*3*512)"512 = 2,359,296

(3°3°512)"512 = 2 359,206
(3*3°512)'512 = 2,359,206
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ResNet (2016): 3.5% error on ImageNet

* Proposed in “Deep residual learning for image recognition” by He,
Kaiming, Xiangyu Zhang, Shaoqging Ren, and Jian Sun. In Proceedings
of the IEEE conference on computer vision and pattern recognition,.
2016.

* Apply very deep networks with repeated residual blocks.

e Structure: simply stacking residual blocks, but the network is very
deep.



Microsoft

Research
Revolution of Depth 28.2
\ 152 layers J
A
\
\
\
\
\
\
\
‘ 22 layers | [ 19 Iayers
\
\ 6.7
ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet
\ ImageNet Classification top-5 error (%)
15
— Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

http://image-net.org/challenges/talks/ilsvrc2015 deep_residual_learning_kaiminghe.pdf
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Deep nets seem to suffer

CIFAR-10 ImageNet-1000
20— 71— T
¥, 60—
56-layer
-_ 44-layer 50
S ) 32-layer g 34|
210 e — o -layer
£ IRV 20-layer £ 40 / Y
','\
-\_/'\__’,/-\_/-\ - ‘\f \-"\4-\’\ e y "y
31 plam-2 B 30
ﬁi:ﬁ:ii - plain-18 18-]
s I | | . | solid: test/val | —plain-34 | | | | -layer
00 1 2 3 4 5 6 ZG0 10 20 30 40 50
iter. (1e4)

2
iter. (led)

* “Overly deep” plain nets have higher training error
* A general phenomenon, observed in many datasets

http://image-net.org/challenges/talks/ilsvrc2015 _deep_residual_learning_kaiminghe.pdf
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Microsoft

a shallower a deeper Research
model counterpart (slides from Kaiming He)
(18 layers) (34 layers)

* A deeper model should not have
higher training error

3x3 conv, 128
3x3 conv, 128

3x3 conv, 256, /2

o 14
extra
BT layers

3x3 conv, 256

* A solution by construction:
e original layers: copied from a
learned shallower model|
e extralayers: set as identity
* atleast the same training error

* Optimization difficulties: solvers
cannot find the solution when going
deeper...

http://image-net.org/challenges/talks/ilsvrc2015 deep_residual_learning_kaiminghe.pdf
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

3x3 conv, 512
3x3 conv, 512

W W —

ICCV15 =

International Conference on Computer Vision



Key idea: skip connections

Skip connections

* F(x) encodes residual representations, which has previously

. * Residual net
been explored in early works

« When backprop’ing, by the chain rule, gradients will ‘flow’ X
directly to the previous layer.

* In contrast, plain CNNs suffer from vanishing gradient I
problem F(x) yrelu

weight layer

weight layer

identity
X

* It makes the optimization landscape much better ;) = F(x) + x

http://image-net.org/challenges/talks/ilsvrc2015 deep_residual_learning_kaiminghe.pc

https://www.cs.umd.edu/~tomg/projects/landscapes/
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(a) without skip connections (b) with skip connections



ResNet

* VGG-style scheme: halve the spatial
size, double the # of filters

« Use conv layer with stride 2 occasionally
to reduce the spatial dimension => called
“bottleneck” blocks.

http://image-net.org/challenges/talks/ilsvrc2015 deep_residual_learning_kaiminghe.pdf

plain net

I 7x7 conv, 64, /2 I I 7x7 conv, 64, [2 I
pool, /2 pool, /2

I 3x3 conv, 64 I I 3x3 conv, 64 I
4 A

I 3x3 conv, 64 I I 3x3 conv, 64 I
L

3x3 conv, 64 I I 3x3 conv, 64 |

A 4 A 4

I 3x3 conv, 64 I I 3x3 conv, 64 I
A 2

| 3x3 conv, 64 I I 3x3 conv, 64 I
A 2 A

I 3x3 conv, 64 I | 3x3 conv, 64 I
A 4

| 3x3conv,128,/2 | | 3x3conv,128,/2 |
A 4 A 4

|  3x3conv,128 | | 3x3conv,128 |
A 2

| 3x3 cony, 128 I I 3x3 conv, 128 I
A 2 A 4

I 3x3 conv, 128 I | 3x3 conv, 128 I
A 2 L .

| 3x3 cony, 128 I I 3x3 conv, 128 I
h A 4

I 3x3 conv, 128 I | 3x3 conv, 128 I
Y .

I 3x3 conv, 128 I I 3x3 conv, 128 |
4 A 2

|  3a3conv,128 | | 33conv,128 |
| 2 Y

| 3x3conv,256,/2 | | 3x3conv,256,/2 |
\

| 3x3 conv, 256 | I 3x3 conv, 256

| 3x3conv,256 | | 3x3conv, 256
A 4

|  3x3conv,256 | | 3x3conv, 256

| 3x3conv,256 | | 3x3conv, 256
A 4

|  3x3conv,256 | | 3x3conv, 256

| 3x3 conv, 256 I I 3x3 conv, 256
4

| 3x3 conv, 256 | I 3x3 conv, 256

| 3x3conv,256 | | 3x3conv,256 |
A 4

|  3x3conv,256 | | 3x3conv,256 |
k 4

| 3x3 conv, 256 I I 3x3 conv, 256 I
A A

| 3x3 conv, 256 | I 3x3 conv, 256 I

| 3x3con,512,/2 | | 3x3cony,512, /2
A 2 A 4

| 3x3conv,512 | |  3x3conv,512 |
Y

I 3x3 conv, 512 I I 3x3 conv, 512 |
L 4 A 4

I 3x3 conv, 512 I I 3x3 conv, 512 I
A 2

| 3x3 conv, 512 I I 3x3 conv, 512 I
A 2

| 3x3 cony, 512 I I 3x3 conv, 512 I

avg pool

avg pool

fc 1000

fc 1000

ResNet



ResNet in PyTorch

Torchvision implementation:
https://pytorch.org/vision/0.8/ modules/torchvision/models/resnet.html

class Bottleneck(nn.Module):

def forward(self, x): F““._-.-- -

identity =

e E 3x3 conv, 128

out = self.convl(x) *

out = self.bnl(out)

out = self.relu(out) 3x3 Conv, 128
i

out = self.conv2(out)
out = self.bn2(out)

out = self.relu(out) "'"'H.—.T:—
'.-.

out = self.conv3(out) 3x3 Conv, 128, /2 .‘.

out = self.bn3(out) S
¥ Y

if self.downsample is not None: 33 conv, 128 o?

identity = self.downsample(x) l ............

out += identity
out = self.relu(out)

return out 107


https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html

ImageNet nowadays

View Top 5 Accuracy V| by Date v | for | All models

Top-5 accuracy is boring

105

100 : Florence-CoSwin-H
FixResNeXt-101 32x48d

AmoebaNetzA
ResNeXt-101 64x4
95 Inception M3

VGG-19
90 MSRA

Five Base + Eive'HiRes
AlexNet

TOP 5 ACCURACY

85
80

75
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Other models Models with highest Top 5 Accuracy

SOTA top'l accuracy IS around 90_88% View Top 1 Accuracy v | by Date v | for All models ~

100 =

Meta Pseudo Labels (EfficientNet-L2) Model soups (BASIC-1)

90 FixResNeXt-101 32x48d
> PNASNet:5
] . ResNeXt-101 64x4.
§ 80 Inception M3
=]
QO VGG-19
o
< MSRA
= 70 . . -
= Five Base + Five-HiRes
o
= AlexNet

60

50

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
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Autoencoder
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Unsupervised Learning Review

« Recall: unlabeled data.
* Q: what is the main goal of unsupervised learning?

« Examples: clustering, PCA. —
Example: MNIST dataset /= tx6= =7 et

PC1 vs PC2 for MNIST Images 0 =9

* Recall PCA can be used for
‘representation learning’ =
learning useful (and compact)
features.

PC1

(learned features = projected feature vector)

* NNs can be used to do
generalizations of PCA.
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Introductory Example

» Suppose you have a number in {0,1,2,3,4,5,6,7}

* What would be a compact representation (say, for
computers)?

* Q: how many bits do we need?



Train a pair of (encoder E,
decoder D) such that

- D(E(x)) recovers x

- Imposing squared loss on all the
output units & backpropagation.

Q: What do the hidden values
(codes) E(x) look like?

Early Observations

Input Hidden Output
Values ,

10000000 — 89 .04 .08 — 10000000
01000000 — .15 99 99 — (01000000
00100000 — .01 97 .27 — 00100000
00010000 — 99 97 .71 — 00010000
00001000 — 03 .05 .02 — 00001000
00000100 — .01 .11 .88 — 00000100
00000010 —» .80 .01 .98 — 00000010
00000001 — .60 94 .01 — 00000001

FIGURE 4.7 .

Learned Hidden Layer Representation. This 8 x 3 x 8 network was trained to learn the identity
function, using the eight training examples shown. After 5000 training epochs, the three hidden unit
values encode the eight distinct inputs using the encoding shown on the right. Notice if the encoded
values are rounded to zero or one, the resuit is the standard binary encoding for eight distinct values.

p107, Tom Mitchell, “Machine Learnifg”



Autoencoder using deep networks

Input Output
\\ =~ - //
\ ~— — /
/ \ ~ — / \
\ Code /
N B N/ AN TNy
\ / \ /
w \ NV R v/ \
/ \ \ / / \
/ \ \ / / \
/ \
/ \ / \ / \ / \
P / /- ~ 0 ; \ Iy
\ / \ > QD \ /
N e VA ~_ A\
/ - ~ < \
/ _ — ~ - \ PC1 vs PC2 for MNIST Images
g ) N\ J
Y Yo
Encoder Decoder

PC1

We can do this for any data!

How to use it:
- Encoder: for dimensionality reduction [
- Decoder: generate new samples from the distribution by varying the input ‘code’
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PCA as a linear autoencoder

PCA pseudocode

Input: data matrix X € R™*¢

1 /
Preprocess: Let u = ~ 2ii=1%i- Compute x; = x; — u, Vi € [n]

N
Compute the top k eigenvectors V = [vy, ..., vy ] of 11:2?:1 x; (x;)

1 — ), ., v (x — p) ) |€ R¥

Feature map: ¢(x) =

Decorrelating property: " whitening™)
/.

.:1 i=1 () =0 } \ oo
n , o N, 0 2

K.
 Reconstruction (the actual projection): apply u + V¢ (x)

——

(v W)

linear = no activation
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PCA as a linear autoencoder

* The PCA can be represented as an autoencoder
with k units in the hidden layer, constant bias added in each layer):

V1~ —v] i
e Encoder: h = ( ) - x +

eDecoder:x=|v; .. Vg |-h+|u
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Autoencoder using deep networks

Input Output
\\ - - //
\ -~ ~ - - /
/ \ ~ — / \
\ Code /
\ // \\ / N g -7 \ / \ /
\ / \ -/ v/ \ oy
w \ 2 v\ / \y
/ \ \ / / \
// \ ;0\ / - ~_ \ // \ / \\
\ / \ > QD \ /
N VA ~_ N
/ P ~ < \
/ — - —~ ~ \\
N /) N\ J
Yo Yo
Encoder Decoder

We can do this for any data!

What about images?
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Training autoencoders

* Given:
- data x4, ..., x,, € R%,

 Embedding dimension k (k < d)

 Goal: obtain
 Encoder network fg: R% - R¥

» Decoder network g,: R* — R?

» Such that for every i, x; = g¢(fo(x;))

Input

e

-

cr

* Most commonly used formulation (can be straightforwardly trained

by gradient-based methods)

minimizey 4 > ||

— 9o (o))’

Reconstruction error



Autoencoder for images

* Encoder: conv-conv-pool-conv-conv-pool-...,

« Decoder: conv-conv-pool-...?7 It will reduce the spatial dimension
rather than increasing It.

* How to do the opposite of pooling (or conv with stride length >= 2)?

A

/

14 i

L L

Following slides largely based on Stanford cs231n https://youtu.be/nDPWywWRIR0?t=1109
http://cs231n.stanford.edu/slides/2017/cs231n_2017 lecturell.pdf 118



“Un”pooling

Nearest Neighbor N P “Bed of Nails” 1 o0l 0o
112 1122 12 0 0f0 0
3 4 3 3|4 4 314 3,014 0
| 3 31| 4 | 4 | | O 010 | 0
Input: 2 x 2 | Output: 4 xl4 | Input: 2 x 2 Output: 4 x 4

(fig. from Stanford cs231n)*



Max unpooling

Max Pooling

. Max Unpoolin
Remember which element was max! P 9

Use positions from

1 216 3 pooling layer 0O 0 2 0
3 .52 1 5 6 112 0/ 1 00
- L H H B 3 4
1121217 78 . Rest of the network | | 01010 _ 0
/7 | 3|48 3 0 0 4
Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4

Corresponding pairs of
downsampling and
upsampling layers

The dimensions in all layers of the network must be symmetric!

(fig from Stanford cs231n)"*



Transposed convolution

» Other names: upconvolution, fractionally strided convolution,
backward strided convolution, deconvolution (don’t use this

hame)
* Recall: 3 x 3 convolution with stride 2 pad 1.

> Filter moves 2 pixels in

Dot product the input for every one

between filter pixel in the output

and input
Stride gives ratio between
movement in input and
output

Input: 4 x 4 Output: 2 x 2

(fig from Stanford cs231n)



Transposed convolution

Sum where

3 X 3 transpose convolution, stride 2 pad 1 output overlaps

E—— Filter moves 2 pixels in

Input gives the output for every one

weight for pixel in the input

filter
Stride gives ratio between
movement in output and
iInput

Input: 2 x 2 Output: 4 x 4

Disclaimer: this is not the inverse of convolution!
Rather, it's just a variation of the convolution. (fig from Stanford cs231HY




1D transposed convolution

Output

Input Filter " Output contains
aXx copies of the filter
weighted by the
input, summing at
ay where at overlaps in
o the output

X
a/
azr|b
b g =i
Z/
\ E

|

(fig from Stanford cs231H)*



Decoders: additional remarks

« Decoders: can be directly used to generate data from the original data
distribution

* There are many “modern” ways to train decoders, e.g. generative
adversarial network (GAN)

Input Output

o~

/
N
|
O
a.
\

~ -
~ -
S~
- ~
- ~
-~
~ ~
N~
-~ ~
~ ~
~N Ve
~N e
N 7
\ s ~ 7/
] ¢
(¢
~N re
NS
7N
7
e
~ ~
~ -~
~—
-~ ~
~
~ -
~ -
—_~
- ~
- ~

l

14 i

(LTI TTTTITTT]
CLLT T I ]

Following slides largely based on Stanford cs231n https://youtu.be/nDPWywWRIR0?t=1109
http://cs231n.stanford.edu/slides/2017/cs231n_2017 lecturell.pdf 124



Samples from fully-connected decoders

lan Goodfellow et al., “Generative
Adversarial Nets”, NeurlPS 2014

(not using conv layers)



Samples from convolutional decoders

Radford et al, ICLR 2016




Autoencoders: more usages

* Interpolate between two samples by interpolating their codes

D(z1) D(tzy + (1 —1t)zp) D(z,)

]

Il

=

([T IITIIL]
L T

g

[}

§<
<

127



Samp
from t

Learned ‘code’ Is interpretable

Radford et al, ICLR 2016

Smiling woman Neutral woman Neutral man

€S

mode

e <

Average Z
vectors, do
arithmetic

Smiling Man

 This means thét there are ‘directions’ in the latent code z that have

particular meanings!

(slide from Stanford CS231n)



Learned ‘codes’ Is interpretable

Glasses man No glasses man No glasses woman e

Woman with glasses
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Resources

“The Deep Learning Book™ by Goodfellow et al.
https://www.deeplearningbook.org/

3BluelBrown Youtube channel has a nice four-part intro:
https://www.youtube.com/watch?v=aircAruvnKk

Free book by Michael Nielson uses MNIST example in Python:
http://neuralnetworksanddeeplearning.com/

“Dive into deep learning”: an online textbook with interactive notebook
https://d2].al/index.htm|



https://www.youtube.com/watch?v=aircAruvnKk
http://neuralnetworksanddeeplearning.com/
https://d2l.ai/index.html
https://www.deeplearningbook.org/




Multilayer Perceptron

Final layer Is typically a linear
model... each output node is
computed by

1
O-(’IUT;C -+ b) — | n 6—(wT;U—|—b)

\ Vector of activations from

previous layer

Recall that for multiclass
logistic regression with K
classes,

p(Class = k | z) ox o(wi = + by,)




Backpropagation
[ Source : 3BluelBrown : https://www.youtube.com/watch?v=aircAruvnKKk ]
Activation at final layer involves
weighted combination of
activations at previous layer...

2n = 0(Whnzn_1)

Which involves a weighted
combination of the layer before
it...

o (wy, o (wy,_17))

And so on...

o (W 0 (wy, 10 (wy_50(...)))


https://www.youtube.com/watch?v=aircAruvnKk

Computing the Derivative

Recall the derivative chain rule

d d d
T ttow) = 5G| _ ()
\ v J H_/

Derivative of f at its Differentiate g with

argument g(w) respect to w
e.g. treat g(w) as a variable

Alternatively we can write this as...

- flgw)) = £ (9(w))g/(w)



Derivative Chain Rule

Example Derivative of the logistic function,

d d 1
d—za(z) T dzltez
f(z) = i g)=1+e= )




Backpropagation

Example
d

——-0(z) =0(2)(1 - 0(2))_1

d d
T0(0(2)) = o (0(2)) (1 = o (0(2))) -0 (2)

This Is simply the derivative chain rule applied through the
entire network, from the output to the input



Backpropagation

* Implementation-wise all we need Is a function that computes
the derivative of each nonlinear activation

* We can repeatedly call this function, starting at the end of the
network and moving backwards

* |n practice, neural network implementations use auto
differentiation to compute the derivative on-the-fly

» Can do this efficiently on graphical processing units (GPUS)
on extremely large training datasets



L1 Regqularization

o)
w; = sign(w; ) max {|w:°| 7 _,0}
1,1

— F) - —

Consider the case where w} > 0 for all . There are two possible cases,
w; < H(:z

* Optimal value is just w=0
« Contribution of J(w;X,y) is “overwhelmed” by L1 regularizer

* a .
Wi >H7;,7; :

» Shifts w; in the direction of O by distance equal to a/H

Similar process for w<0 but in opposite direction.



Sparse Representations

L1 regularization induces sparse
parameterization — many parameters O

Representational sparsity enforces
many data elements O (or close to it)

Accomplished by same set of
mechanisms as sparse param — norm
penalty on representation

J(0;: X,y) = J(0; X,y) + aQ2(h)

e.g. L1 penalty

narse Parameterization

| 1
—— O O =~

0 0 -2 0 0
0 -1 0 3 0
5 0 0 0 0
0 0 -1 0 —4
0 0 0 -5 0

AERan

-1 2 -5 4 1

2 -3 -1 1 3

5 4 2 -3 -2

1 2 -3 0 -3

4 -2 2 -5 -1

B € R™"

Sparse Representation

(Goodfellow 2016)



Label Smoothing

* Many datasets have some mistakes in labels y

* Inject noise Iin labels at output
« Assume label is correct with probability 1-e (for some small e)
* Otherwise any other label is assigned

» Can incorporate this into cost function analytically

 Label smoothing regularizes model based on softmax
* Replaces hard assignment with 1-e and e/(k-1) ; for k labels
« Can use standard cross-entropy loss with soft targets

(Goodfellow 2016)



Convolution: Some Intuition

Define the convolution of filter f on image | as:

(PG = ) D 16x=m,y —m)f(mmn)

Many ML libraries actually implement cross-correlation:

(F«DGY= ) D 1Gc+m,y+n) fmn)

Learning finds good values for the convolution filter...
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VGGNet (2014): 7.3% error on ImageNet

Mimic large convolutional filters with multiple small (3x3) convolutional filters

Every time it halves the spatial size, double the # of filters

(not counting biases)

INPUT: [224x224X3] memory: 224*224*3=150K params: 0

ConvNet Configuration

CONV3-64: [224x224x64] memory: 224*224*64=3 2M params: (3*3*3)*64 = 1,728 B T s
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 13 weight | 16 weight |I6wcight 19
POOL2: [112x112x64] memory: 112*112*64=800K params: 0 layers layers layers
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 Pm@g*iﬁ: 224{“333'2;% —t=
CONV3-128: [112x112x128] memory: 112112*128=1.6M params: (3*3*128)*128 = 147,456 /"0 | ovaed Nl comsed | o
POOL2: [56x56x128] memory: 56*56*128=400K params: 0 maxpool
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 conv3-128 | conv3-128 || conv3-128 | co
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 S ml"“3-‘23 SR Y
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 i | i Ner s 1
POOL2: [28x28x256] memory: 28*28*256=200K params: 0 conv3-256 | conv3-256 [§ conv3-256 | co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 conv1-256 (f conv3-256 | co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 e _
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512=2,359.296 wmisD oD T T
POOL2: [14x14x512] memory: 14*14*512=100K params: 0 conv3-512 | conv3-512 [ conv3-512 | co
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 convl-512 ff conv3-512 | co
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 s =
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296  Tom3312 | com3312 eom3312 oo
POOL2: [7x7x512] memory: 7*7*512=25K params: 0 conv3-512 | conv3-512 [f conv3-512 | co
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 aan ol Lialal B
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 T
FC: [1x1x1000] memory: 1000 params: 40961000 = 4,096,000 FC-4096

FC-4096

FC-1000

soft-max

[Simonyan and Zisserman, 2014] slide from Stanford CS231n
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1D transposed convolution: matrix form

We can express convolution in
terms of a matrix multiplication

T Yy 2

rxa= Xa

0 0 O

00 2z y 2z O

|

SR O o O

|

ay + bz

bxr + cy + dz

Example: 1D conv, kernel
size=3, stride=2, padding=1

|

Output
Input Filter ax
. 7 x <
& Z ] = E
Transposed convolution multiplies by the T~ =
transpose of the same matrix:

et g X"

o

z 0] [ ax |
y 0 ay
& & {a] _ |az+bx
0 wy| |b|] by
0 = bz
0 0 0

Example: 1D transposed conv, kernel
size=3, stride=2, padding=0

(fig from Stanford cs231H)*
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