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Probabilistic modeling: systematic approach for ML

* The recipe:
1. Model how the data is generated by probabilistic models, but with
parameters unspecified (modeling assumption / generative story)

2. (Training) Learn the model parameter 6
3. (Test) Make prediction / decision based on the learned model P(z; 6)
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probabilistic
model
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training data

http://slideplayer.com/slide/4527958/



Warm-up Example: estimate population height &weight

e Suppose we have collected a sample of UA students height & weight data
(x1(1), x1(2)), ..o, (X (1), X (2))

height weight weight |

 Model it using a 2-d Gaussian distribution with unknown

mean & variance

* Train the model using maximume-likelihood
* What does the log-likelihood function look like?

height



Probability review: multivariate Gaussian

Multivariate Gaussian For RV X € R% with mean Birite Nomal Dersiy — 1-00
u and positive semidefinite covariance matrix X,
its probability density function (PDF) is,

p(x) = 2] exp— (2 — )" — )

0.053

|A| : matrix determinant of A

o.ooa
-+ 00

Interpretation
u: peak location of the PDF (mode)
2: the covariance matrix; specifically when d = 2:
2 E R N HE P =
Ox Oxy L | Nex BE| | S
Z — 2 ) /x"x: -;; -r. MH K_‘\h | / | ;
Ovrx Oy Y /4 NN
-diagonal entries: variance of each coordinate ~)

-off diagonal entries: correlation b/w coordinates



Warm-up Example: estimate population height & weight

MLE: solve m%x Y InP(x;; 1, %), where
1,

P(x;u,X) = . exp (—l(x—,u)TZ‘l(x—u)> |
T Jendsl 2 +

Sample mean
Observation 1: for any fixed X, the optimal uis u = %Zixi (Exercise)

Observation 2: for any fixed y, the optimal X is such that A = £~ equals

1 1
Argmax fA) =32 InfA] == (x; — WA — )

* Fact: f is concave in A Sample covariance matrix
_ 1
L TFA) = 0= nA = S0 — 05— )T =055 =25, — G - W)

Quick Q1: can you simplify the expressions when d = 17

Quick Q2: what if the data is importance-weighted?




Probabilistic clustering: Gaussian mixture model (GMM)

* Data: S = {xq, ..., x,} € R4

* Given: K - the number of clusters.

* Generative story:
* k ~ Categorical(m) (hidden — latent variable)
* x| k ~ N(:ukizk)

Parameters to learn:
e Cluster weight m = (1ry, ..., mg) € AX™1

* Cluster location u = (uq, ..., Ug)

* Cluster shape (covariance matrix) X = (24, ..., 2g)




Marginal Likelihood

More often, we have a joint distribution with observations X, latent variables K,
and parameters 0

p(k,x | 0) = p(k | 0)p(z | k,0)
Need to marginalize out latent va riables hence the name marginal likelihood:

p(z | 0) = Zpk\e (z | k,0)

In GMM: 6 = (m, u, X)

* Observation x, latent variable k
1
n(k|0)=m, x|k, 0)= e
p(k16)=m, p(x1k6) N
* p(x10) = Yk_q T N(X; g, Zi)

xp (=3 O = ) TE 0~ ) = N i )



Maximum likelihood estimation for GMM

e Maximum likelihood estimation:

K
argmaxz log Z T N(Xi; Uy Zi)
i

T H2 k=1

e How to solve it?

 How do we get the cluster assignments?

¥
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Illustration

057

* Mixture of 3 Gaussians
* (a) is ground truth (we don’t know this -- the k; (color) for each example x; are hidden).

e (b) is what we see, (c) is what the algorithm can recover.



GMM for clustering: algorithms

. Maximum Iikelihood estimation Journal of Machine Lea.ming Research 18 (2(]18) 1-11 Submitted 12/16; Revised 12/16; Published 4/18
K .
argmax ,; log(Xj =1 mx N (x5 g, Zx)) o o . |
T, lulz Maximum Likelihood Estimation for Mixtures of Spherical
Gaussians is NP-hard
is (1) computationally hard (2) ill-posed (see later slides) Christophor Tosh
izﬁzﬁe];a:f;«zzzum Seience and Engineering PGS e ey
University of California, San Diego
La Jolla, CA 92093-0404, USA
 How to design computationally efficient algorithms that can approximately maximize the log-
likelihood function?
* Observation: if for each data point i, we not only have x; but also
|
have k;, (supervised learning setting)
then MLE is easy to obtain 0.5
Y/ . . 0
* Let’s see why & why this is useful..

0 0.5 |



Warmup: MLE for GMM with known cluster membership

« Maximize likelihood & maximize log-likelihood Only related tor

e max L(m, {u,X}) = max Y,log P(x; k;;m, {u, X}) /
nl{ﬂlz} TC’{M’E}
" mles) (i 108 PCxi | ks (T 3 log PGk m) |

Only related to u, X

max Y;log P(k;;m) = Y x_iny Inmy, where ny, = #{i: k; = k}
T

n
:>T[k =7k

Only related to u;, X,

/

* max ),;log P(x; | kj;{u,2}) = ZkIZi:k:klOgP(xi | by = k; pg, 2 ) |
(w2} l

11



Warmup: MLE for GMM with known cluster membership (cont’d)

max > InP(xi |k = ks e By

Ui Xk
L:ki=k

* Equivalent to Gaussian MLE problem

max 2 In N (x;; pie, Zi)

Ui 2k
I:ki=k

NGip) = T—exp (=5 (= W27 (= )

* From slide 5, we know its solution is:

1
U, = [sample mean for examples from class k] = n_zi'ki=k X;
Rl

: : 1
Y = [sample covariance matrix for examples from class k] = n—Zi:ka(xi — ) — ) "
k

https://www.youtube.com/watch?v=jAyTgkiaBbY .



Warmup: MLE for GMM with known cluster membership (cont’d)

In summary, the MLE for GMM with known-cluster membership data (x;, k;)’s is given by:

* For every k:
Hie = nikzi:kl:k Xi |
2p = nikzi:kﬁk(xi — ) (6 — ) ' 03
e = 0
* What if the dataset is importance weighted: ((x;, k;), w;), i =1, ...,n? . > :

The weighted MLE solution is: for every k:
1
luk — W_kZi:kizk Wl xl

1
Xy = W_kZi:kl:k w; (e — ) (6 — ) '

Wi
e =W



GMM for clustering: algorithms

* Coming back to the original question..
0.5

What if the cluster memberships are unknown?

argmax Y,; log(Xr—1 Tk N(x;; thx, Zx)) 0

T[’M'Z 0 0.5 1

Expectation-Maximization (EM) algorithm (Dempster et al, 1977) provides a general approach for
approximate MLE for probabilistic models with latent variables

* Has wide applications well-beyond GMMs

High-level idea: reduce to MLE for fully-observed probabilistic models

14



EM algorithm: the idea

* Given: a probabilistic model P(x, z; 0),
with x being the observed part, z being the latent part

* Would like to maximize the log-likelihood on the observed data: In P(x;0) =1n ), P(x,z;60)

e Maximizing In )., P(x, z; ) is intractable => instead, maximize a lower bound of it

. _ . _ AW P(x,z;0)
InP(x;8) =In ),P(x,z;0) =In),P(z| x;0") a0’
/ P(x,z;0) ) . . .
> P(z|x;0")In P20’ (Jensen’s inequality & concavity of In func.)
* With n iid examples,
P(x;,z;6)

Y InP(x;60) =X, >,P(z]x;6")In
l | |

| |
L(6) Q(6;6")

P(lei;el)|

15



Jensen’s Inequality

fEX]) < E[f(X)]

Valid for both discrete (expectations are sums)
and continuous (expectations are integrals)
random variables, for any convex function f. f(x)

In(E[X]) > E[ln(X)

The logarithm is concave.




EM algorithm: the idea

P(x;,z;0
© STy InP(u;6) 2SI, X, P(2 | ;6 ) In 229
L | | " S
| | ) | : 9
L(O9) Q(6;6") Irrelevant to 6 CQ I 6,6 )
. e . / Q, " v
* Why optimizing Q(6;8")? al

* Q(0;0") =Xi-12,P(z | x;;0")InP(x;,2;0) H9(0)
* Maximizing Q(0; 0') < maximizing the log-likelihood of model 8 on an importance-weighted
set of fully-observed data

ave PG = 115500 | PG =2 1230 02,71

x; (42,-7.1) 0.2 0.8 —) (42,-71),2 0.8

xz (0.05, '1.2) 0.98 0.02 (0.05 _1.2) 1 0.98

(0.05,-1.2),2  0.02

17



EM algorithm: the idea

P(xi,Z;Q)

PInP(x;0) =X .Y, P(z | x; 6’)ln,,(z|xi;0,)
|

l | |
I I
L(0) Q(0;0)
The lower bound approximate Q(6; 8") is sometimes tight
« At6 =6,0(0";0") = L(6)
* Forgeneral 8, L(8) —Q(0;0") = X1, KL(P(Z | x;;0"),P(z | x;; 6)) >0

Kullback-Leibler (KL) divergence: KL(p,q) = E [ln p(z)

q(z)

Z~p
Measures difference between distributions

Properties:
* KL(pllq) = 0, forallp, q;
* KL(q|lg) = 0, forall g

https://datascience.oneoffcoder.com/kullback-leibler-divergence.html e



EM algorithm: the procedure

1. Initialize parameters (1)

2. Forn=1,2,...

* E-step: for each example i, evaluate P( z | x;; 0(™))

P(x;,z;0)
P(lei;e(n))

)

(This is for calculating Q(0; H(n)) =Y, Y, P(z|x;60)In

e M-step: "D « argmaxg Q(Q; 9("))
(Performing MLE over an importance-weighted dataset of fully observed data)

e Check convergence of either log-likelihood or parameters; if yes, return

19



EM algorithm: convergence guarantee

 Monotone improvement of likelihood function

e |llustration:

' =0, 9" = 9(™*tD) = argmax,Q(6,0™)

* Therefore,
L(g(n)) — Q(g(n)lg(n))
< Q(g(n+1), g(n))
< £(e™+D)
< £(p®+2)

IA |

20



EM algorithm: application to GMMs

* Recall: latent variable k (cluster membership), parameters 8 = (m, {i, X})

* The E-step: 2 e
« for each example i, evaluate P(k; | x;;0) for 8 = (W O P
0 g .:3.~ a*
o _— . __ P(ki=k,x;;0) _ mpN(xpueXy) _ ‘o.’&’ Ce
P(kl - k | xl; 6) - P(Xi;e) - Zlc{zl T[cN(xl'}MC,ZC) _'ylk O
-2

* Yik: the responsibility component k has for generating x;

Conceptually, y;; can be thought of as soft cluster membership of example i (e.g. cluster 1 =
blue, y;1 larger => bluer) based on current belief



EM algorithm: application to GMMs (cont’d)

* The M-step:
6™+  argmaxy Q(6; 6™),
P(x;ik;0 8 . et
where Q(6;0™) = XL % P(ki = k | x;;0™)) lnP(k(ID;i;e(z)) O -':é.él--;
0 o g 2
¥ O
This is equivalent to argmaxg Y.;= Y Vik In P(x;, k; = k; 6) L .,."
—2 0 (b) 2

* Can view the above as the log-likelihood of weighted dataset {(x;, k), Vi }ien] ke[k]

22



EM algorithm: application to GMMs (cont’d)

e How to solve

MaxXg=(x u5) Die1 2k Vik N P(x;, ki = k; 0)7?

* This is MLE with fully-observed data with nK importance-weighted examples {(x;, k), yik}ie[n],ke[,{]

* \We have seen its solution before:

Bl

Ik
T[ - —
A
_ XiYik Xi
He = =1 g
k

5 vk O —up) (=) T
e ™ l-‘k -7

* Here Ty = YiL Vi, T = X Yik =1 -2 0 (g 2

23



EM In action

24



EM for GMM: 1-slide summary

Initialize: T € AKX,

(E)xpectation step: for every i, k:

T N(Xi; Uk, 2k)

{n € RE, %) € RA4YE_

(M)aximization step: for every k:

‘)’ik=Z
¢ LEtFk:
;1
o‘uk_r_k
ey 1
Zk_l“k
I'x
.T[I,c_7

° Set uy < py, Zp < Iy, Ty < My,

K
i/ =1 Trr N(Xistper Zger)

n
i=1Vik

n
i=1YikXi

?:1 Yir (x; — :ullc)(xi - ML)T

responsibility

soft counts

note we use y;, rather than

0

-2

0 (b) 2
L=1 % o’
e ¢
8
/.
3':1 ".

-2

Stop when: the log likelihood does not increase much or the parameters do not change much.

25




Tips

* Stopping criteria:

g 1£(6")-L(0)| <
|£(6)]

« Parameter-based: ||ur — |l + |12 — Zellp + | — el < €

e Likelihood-base

* Initialization of m, {u, X}

1 1

e Eg.m « (E’ ""E)’ u <cluster centers of Lloyd’s algorithm, X =1

* Beware of pitfalls

26



Pitfalls ) :

p(x)

* Maximum likelihood of GMM can result in severe overfitting
* In the log-likelihood expression )i~ ; In P(x;; 6),
it is possible to set 6 so that:

for one example i, In P(x;; 0) is arbitrarily large

* Imagine Gaussian MLE on one data point:

. 2 — 1 (_ (.X'—‘LI,)Z) Wishart Distribution
rgggc In N(xy;u,0%) ng( In (W exp .
* To address this:
* Regularization: penalize overly small X,
* Detect overly small X, and restart EM

* Bayesian treatment: impose a prior on X;’s

Density
1 |
—
e
p—

|

0.00 0.02 0.04 006 008 0.10

sampleWishart 27

https://www2.karlin.mff.cuni.cz/~maciak/NMST539/cvicenie2018_4.html



Lloyd’s algorithm is EM in the limit

Suppose we use EM for maﬁinzlize L(m,{u,X}), subject to:
miu,

for every k,

Y = €1 € R¥*? forsomee > 0 (fix X, m throughout -- do not update them)
1
Ty = E

Running the EM algorithm:

E-step:
Whene — 0:

1 2
. X X ) € ex (—— X — ) . . .
p(x |pe, Zie) P\™ % ¢ = page 112 Vi = 1if uy is the cluster center closest to x;; 0 otherwise

2
[l 2=l )
2€

2
ZIk{/:l Tk EXP(_”xl :ek,” ) O .@

Rl

.’-g;:'
£ 0O
Imagine K = 2 §~
-2 0 ® 2

Tk eXp(— 2

* Yik =

/

28



Lloyd’s algorithm is EM in the limit

o 0 . . K
e Initialize: T € AKX, {u € ]Rd,ZLE RAxAYK_
Imagine m = Uniform, ;, = €l with a very small €

e (E)xpectation step:

* Yik = 5 Yir = 1if uy is the cluster center closest to x;; 0 otherwise

Ik<’=1 Tkr P
° Letny = Xi1Vik count how many points assigned to the centroid

e (M)aximization step:

. 1 an update centroid u; as the mean of the points assigned to cluster k
He = n_kZi=1 YikXi

. : T

* Stop when: the log likelihood does not increase much or parameter does not change much.



Gaussian Mixture Models: additional remarks

 EM is not the only method that can maximizes likelihood in GMMSs  Gradient-Based Training of Gaussian Mixture Models for

High-Dimensional Streaming Data

* E.g. can just do gradient ascent on the likelihood function

Alexander Gepperth'(® . Benedikt Pfiilb’

Accepted: 15 July 2021 / Published enline: 17 August 2021
2 The Author(s) 2021

* Another popular approach: spectral methods
* Key idea: use Method of Moments to estimate model parameters
* Has provable guarantees when the model is “"well-specified”

* Can be combined with EM
Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing

Yuchen Zhang, Xi Chen, Dengyong Zhou, Michael |. Jordan

Algorithms that assume a certain amount of separation:

* Generally, stronger assumption on data generating process

=> easier to learn \/Ta \/Ta \/TE g
EM Vempala Hsu-Kakade

http://www.phillong.info/stoc13/stoc13_ml_sanjoy_dasgupta.pdf 30



EM as a generic tool: additional remarks

* EM is universal: any situation where you have latent variables.
e E-step: compute the posterior probability (=responsibilities) for the latent variables

* M-step: use the responsibilities as ‘soft membership’, and find parameters that maximize
Q(6,6™) - log-likelihood on an importance-weighted, fully-observed dataset

e Other popular examples:

* Semi-supervised learning
* Some labels are unobserved — the hidden labels are the z;’s!

* Missing data
* Some features are often missing for various reason. (e.g., for survey, they just did not fill out)
* “Grading an example without an answer key” — CIML Sec 16.1
* Once you provide a generative model, you know how to apply EM

31



Recap

GMM: a generative model.
Difference from supervised learning: we must infer the latent, unobserved variable.

Connection to k-means and Lloyd’s algorithm

The power of graphical models: specify reasonable generative model, and what you should do,
ideally, is already well-defined.

* The pain is in the computational complexity
* EM is one way to get around.

Additional reading: Bishop, “Pattern Recognition and Machine Learning”, Chap. 9

32



Backup



Marginal Likelihood

More often, we have a joint distribution with observations X, unknown
variables k, and parameters 6

p(k,x | 0) = p(k | 0)p(z | k,0)
Need to marginalize out latent va riables hence the name marginal likelihood:

p(z | 0) = Zpkw (z | k,0)

In the GMM:
0 = (m,ul)
*p(k10)=my



Warmup: MLE for GMM with known cluster membership (cont’d)

max > InP(xi |k = ks e By

Hi 2k
L:ki=k

e Conceptually the same as the Gaussian MLE problem mazx 2 InN(x;; 1, %), where
H,

NG, 2) = —exp (=5 (= ) TE7 (r — )

* From slide 5, we know its solution is

1
U, = sample mean for examples from class k = n—Zi-kl:k X;
L A

>, = sample mean for examples from class k = nizi:k:k(xi — ) (e — )T
k l

https://www.youtube.com/watch?v=jAyTgkiaBbY
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EM algorithm: application to GMMs (cont’d)

* How to compute
argmaxg=(quz) Li=1 Lk Vie In P(xy, ki = k; 0)?
Using MLE for GMM with fully-observed data (recall slide), we have

1
Hi = n_kzi:ki=k Xi

1
Xy = n—kZi:ka(xi — ) (6 — ) '

Bl

(Now, for optimizing Q(Q; H(”)))

_ i Vik Xi

Hic Zi Yik 0
_ 2 Vi Oci— i) Coi—pp) T

%
k Zi Vik




Pitfalls

 Maximum likelihood of GMM can result in severe overfitting
* In the log-likelihood expression )i~ ; In P(x;; 6),
it is possible to set 6 so that:

for one example i, In P(x;; 0) is arbitrarily large

* Imagine Gaussian MLE on one data point:

L 1 _ (x-w)?
rEgg(ln N(xqy;pu,0°) = r&zgln (WeXp( 252 ))

e Solution:
* Regularization: penalize overly small X,
* Detect overly small X, and restart EM

https://www2.karlin.mff.cuni.cz/~maciak/NMST539/cvicenie2018_4.html

Density

0.00 0.02 0.04 006 008 0.10

|

|

Wishart Distribution

sampleWishart 37
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