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Probabilistic modeling: systematic approach for ML
• The recipe:

1. Model how the data is generated by probabilistic models, but with 
parameters unspecified (modeling assumption / generative story)

2. (Training) Learn the model parameter ෠𝜃 

3. (Test) Make prediction / decision based on the learned model 𝑃(𝑧; ෠𝜃) 
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Warm-up Example: estimate population height &weight

• Suppose we have collected a sample of UA students height & weight data 
(𝑥1(1), 𝑥1(2)), … , (𝑥𝑛(1), 𝑥𝑛(2))

• Model it using a 2-d Gaussian distribution with unknown 

mean & variance

• Train the model using maximum-likelihood

• What does the log-likelihood function look like?
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Probability review: multivariate Gaussian
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Multivariate Gaussian For RV 𝑋 ∈ ℝ𝑑  with mean 
𝜇 and positive semidefinite covariance matrix Σ, 
its probability density function (PDF) is , 

|𝐴| : matrix determinant of 𝐴

Interpretation
𝜇: peak location of the PDF (mode)

Σ: the covariance matrix; specifically when 𝑑 = 2:

Σ =
𝜎𝑋

2 𝜎𝑋𝑌

𝜎𝑌𝑋 𝜎𝑌
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-diagonal entries: variance of each coordinate

-off diagonal entries: correlation b/w coordinates



Warm-up Example: estimate population height & weight

• MLE: solve max
𝜇,Σ

σ𝑖 ln 𝑃(𝑥𝑖; 𝜇, Σ), where 

𝑃 𝑥; 𝜇, Σ =
1

2𝜋 𝑑 Σ
exp −

1

2
𝑥 − 𝜇 ⊤Σ−1(𝑥 − 𝜇)

• Observation 1: for any fixed Σ, the optimal 𝜇 is 𝜇 =
1

𝑛
σ𝑖 𝑥𝑖   (Exercise)

• Observation 2: for any fixed 𝜇, the optimal Σ is such that Λ = Σ−1 equals

   argmax
Λ

 𝑓 Λ ≔
1

2
σ𝑖 ln Λ −

1

2
𝑥𝑖 − 𝜇 ⊤Λ 𝑥𝑖 − 𝜇  

• Fact: 𝑓 is concave in Λ

• ∇𝑓 Λ = 0 ⇒ 𝑛Λ−1 − σ𝑖 𝑥𝑖 − 𝜇 𝑥𝑖 − 𝜇 ⊤ = 0 ⇒ Σ =
1

𝑛
σ𝑖 𝑥𝑖 − 𝜇 𝑥𝑖 − 𝜇 ⊤

• Quick Q1: can you simplify the expressions when 𝑑 = 1?

• Quick Q2: what if the data is importance-weighted? 
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Probabilistic clustering: Gaussian mixture model (GMM)

• Data: 𝑆 = 𝑥1, … , 𝑥𝑛 ⊂ ℝ𝑑

• Given: 𝐾 - the number of clusters.

• Generative story:

• 𝑘 ∼ Categorical(𝜋) (hidden – latent variable)

• 𝑥 ∣ 𝑘 ∼ 𝑁(𝜇𝑘 , Σ𝑘)

Parameters to learn: 

• Cluster weight 𝜋 = (𝜋1, … , 𝜋𝐾) ∈ Δ𝐾−1

• Cluster location 𝜇 = (𝜇1, … , 𝜇𝐾)

• Cluster shape (covariance matrix) Σ = (Σ1, … , Σ𝐾)
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Marginal Likelihood

More often, we have a joint distribution with observations x, latent variables k, 
and parameters 𝜃   

Need to marginalize out latent variables, hence the name marginal likelihood:

In GMM: 𝜃 = (𝜋, 𝜇, Σ)

• Observation 𝑥, latent variable 𝑘

• 𝑝 𝑘 𝜃 = 𝜋𝑘 , 𝑝 𝑥 𝑘, 𝜃 =
1

2𝜋 𝑑 Σ𝑘

exp −
1

2
𝑥 − 𝜇𝑘

⊤Σ𝑘
−1(𝑥 − 𝜇𝑘) =: 𝑁 𝑥; 𝜇𝑘, Σ𝑘

• 𝑝 𝑥 𝜃 = σ𝑘=1
𝐾 𝜋𝑘 𝑁(𝑥; 𝜇𝑘, Σ𝑘)



Maximum likelihood estimation for GMM

• Maximum likelihood estimation:

argmax
𝜋,𝜇,Σ

෍

𝑖

log ෍

𝑘=1

𝐾

𝜋𝑘 𝑁(𝑥𝑖; 𝜇𝑘 , Σ𝑘)

• How to solve it?

• How do we get the cluster assignments?
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Illustration

• Mixture of 3 Gaussians

• (a) is ground truth (we don’t know this -- the 𝑘𝑖 (color) for each example 𝑥𝑖 are hidden).

• (b) is what we see, (c) is what the algorithm can recover.
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GMM for clustering: algorithms

• Maximum likelihood estimation 

                   argmax
𝜋,𝜇,Σ

σ𝑖 log(σ𝑘=1
𝐾 𝜋𝑘 𝑁(𝑥𝑖; 𝜇𝑘 , Σ𝑘)) 

     is (1) computationally hard (2) ill-posed (see later slides) 

• How to design computationally efficient algorithms that can approximately maximize the log-
likelihood function?

• Observation: if for each data point 𝑖, we not only have 𝑥𝑖  but also 

    have 𝑘𝑖, (supervised learning setting) 

    then MLE is easy to obtain

• Let’s see why & why this is useful..
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Warmup: MLE for GMM with known cluster membership

• Maximize likelihood ⇔ maximize log-likelihood

• max
𝜋, 𝜇,Σ

 𝐿 𝜋, 𝜇, Σ = max
𝜋, 𝜇,Σ

σ𝑖 log 𝑃(𝑥𝑖 , 𝑘𝑖; 𝜋, 𝜇, Σ ) 

                                    = max
𝜋, 𝜇,Σ

σ𝑖 log 𝑃 𝑥𝑖 𝑘𝑖; 𝜇, Σ + σ𝑖 log 𝑃 𝑘𝑖; 𝜋

  

                   

max
𝜋

 σ𝑖 log 𝑃 𝑘𝑖; 𝜋 = σ𝑘=1
𝐾 𝑛𝑘 ln 𝜋𝑘, where 𝑛𝑘 = #{𝑖: 𝑘𝑖 = 𝑘}

    => 𝜋𝑘 =
𝑛𝑘

𝑛

• max
𝜇,Σ

 σ𝑖 log 𝑃 𝑥𝑖 𝑘𝑖; 𝜇, Σ = σ𝑘 σ𝑖:𝑘𝑖=𝑘 log 𝑃 𝑥𝑖 𝑘𝑖 = 𝑘; 𝜇𝑘 , Σ𝑘
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Only related to 𝜇𝑘 , Σ𝑘

Only related to 𝜋

Only related to 𝜇, Σ



Warmup: MLE for GMM with known cluster membership (cont’d)

max
𝜇𝑘,Σ𝑘

෍

𝑖:𝑘𝑖=𝑘

ln 𝑃 𝑥𝑖 𝑘𝑖 = 𝑘; 𝜇𝑘 , Σ𝑘

• Equivalent to Gaussian MLE problem

max
𝜇𝑘,Σ𝑘

෍

𝑖:𝑘𝑖=𝑘

ln 𝑁 𝑥𝑖; 𝜇𝑘 , Σ𝑘

• From slide 5, we know its solution is: 

𝜇𝑘 = [sample mean for examples from class 𝑘] =
1

𝑛𝑘
σ𝑖:𝑘𝑖=𝑘 𝑥𝑖

Σ𝑘 = [sample covariance matrix for examples from class 𝑘] =
1

𝑛𝑘
σ𝑖:𝑘𝑖=𝑘 𝑥𝑖 − 𝜇𝑘 𝑥𝑖 − 𝜇𝑘

⊤ 

  

12
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𝑁 𝑥; 𝜇, Σ =
1

2𝜋 𝑑 Σ
exp −

1

2
𝑥 − 𝜇 ⊤Σ−1(𝑥 − 𝜇)



Warmup: MLE for GMM with known cluster membership (cont’d)

• In summary, the MLE for GMM with known-cluster membership data (𝑥𝑖 , 𝑘𝑖)’s is given by: 

• For every 𝑘:

     𝜇𝑘 =
1

𝑛𝑘
σ𝑖:𝑘𝑖=𝑘 𝑥𝑖

     Σ𝑘 =
1

𝑛𝑘
σ𝑖:𝑘𝑖=𝑘 𝑥𝑖 − 𝜇𝑘 𝑥𝑖 − 𝜇𝑘

⊤

                                             𝜋𝑘 =
𝑛𝑘

𝑛

• What if the dataset is importance weighted: ((𝑥𝑖 , 𝑘𝑖), 𝑤𝑖), 𝑖 = 1, … , 𝑛?

• The weighted MLE solution is: for every 𝑘:

     𝜇𝑘 =
1

𝑊𝑘
σ𝑖:𝑘𝑖=𝑘 𝑤𝑖  𝑥𝑖

     Σ𝑘 =
1

𝑊𝑘
σ𝑖:𝑘𝑖=𝑘 𝑤𝑖 𝑥𝑖 − 𝜇𝑘 𝑥𝑖 − 𝜇𝑘

⊤

                                             𝜋𝑘 =
𝑊𝑘

𝑊

Here, 𝑊𝑘 = σ𝑖:𝑘𝑖=𝑘 𝑤𝑖 , 𝑊 = σ𝑖 𝑤𝑖  13



GMM for clustering: algorithms

• Coming back to the original question.. 

• What if the cluster memberships are unknown?

• argmax
𝜋,𝜇,Σ

σ𝑖 log(σ𝑘=1
𝐾 𝜋𝑘 𝑁(𝑥𝑖; 𝜇𝑘 , Σ𝑘))

• Expectation-Maximization (EM) algorithm (Dempster et al, 1977) provides a general approach for 
approximate MLE for probabilistic models with latent variables

• Has wide applications well-beyond GMMs

• High-level idea: reduce to MLE for fully-observed probabilistic models
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EM algorithm: the idea

• Given: a probabilistic model 𝑃 𝑥, 𝑧; 𝜃 , 

with 𝑥 being the observed part, 𝑧 being the latent part

• Would like to maximize the log-likelihood on the observed data: ln 𝑃 𝑥; 𝜃 = ln σ𝑧 𝑃 𝑥, 𝑧; 𝜃

• Maximizing ln σ𝑧 𝑃 𝑥, 𝑧; 𝜃  is intractable => instead, maximize a lower bound of it

   ln 𝑃 𝑥; 𝜃 = ln σ𝑧 𝑃 𝑥, 𝑧; 𝜃 = ln σ𝑧 𝑃 𝑧 𝑥; 𝜃′ ⋅
𝑃 𝑥,𝑧;𝜃

𝑃(𝑧∣𝑥;𝜃′)

                     ≥ σ𝑧 𝑃 𝑧 𝑥; 𝜃′ ln
𝑃 𝑥,𝑧;𝜃

𝑃(𝑧∣𝑥;𝜃′)
     (Jensen’s inequality & concavity of ln func.)

• With 𝑛 iid examples, 

          σ𝑖=1
𝑛 ln 𝑃 𝑥𝑖; 𝜃 ≥ σ𝑖=1

𝑛 σ𝑧 𝑃 𝑧 𝑥𝑖; 𝜃′ ln
𝑃 𝑥𝑖,𝑧;𝜃

𝑃(𝑧∣𝑥𝑖;𝜃′)

15ℒ(𝜃) 𝑄(𝜃; 𝜃′)



Jensen’s Inequality

Valid for both discrete (expectations are sums)
and continuous (expectations are integrals) 
random variables, for any convex function f.

The logarithm is concave.



EM algorithm: the idea

•  σ𝑖=1
𝑛 ln 𝑃 𝑥𝑖; 𝜃 ≥ σ𝑖=1

𝑛 σ𝑧 𝑃 𝑧 𝑥𝑖; 𝜃′ ln
𝑃 𝑥𝑖,𝑧;𝜃

𝑃(𝑧∣𝑥𝑖;𝜃′)

• Why optimizing 𝑄(𝜃; 𝜃′)? 

• 𝑄 𝜃; 𝜃′ = σ𝑖=1
𝑛 σ𝑧 𝑃 𝑧 𝑥𝑖; 𝜃′ ln 𝑃 𝑥𝑖 , 𝑧; 𝜃 + 𝑔(𝜃′)

• Maximizing 𝑄 𝜃; 𝜃′ ⇔ maximizing the log-likelihood of model 𝜃 on an importance-weighted 
set of fully-observed data

• Example: 
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ℒ(𝜃) 𝑄(𝜃; 𝜃′) Irrelevant to 𝜃

Value 𝑃 𝑧 = 𝟏 𝑥𝑖; 𝜃′ 𝑃 𝑧 = 𝟐 𝑥𝑖; 𝜃′

𝑥1 (4.2, -7.1) 0.2 0.8

𝑥2 (0.05, -1.2) 0.98 0.02

(𝑥, 𝑧) value weight

(4.2, -7.1), 1 0.2

(4.2, -7.1), 2 0.8

(0.05, -1.2), 1 0.98

(0.05, -1.2), 2 0.02



EM algorithm: the idea

•  σ𝑖=1
𝑛 ln 𝑃 𝑥𝑖; 𝜃 ≥ σ𝑖=1

𝑛 σ𝑧 𝑃 𝑧 𝑥𝑖; 𝜃′ ln
𝑃 𝑥𝑖,𝑧;𝜃

𝑃(𝑧∣𝑥𝑖;𝜃′)

• The lower bound approximate 𝑄(𝜃; 𝜃′) is sometimes tight

• At 𝜃 = 𝜃′, 𝑄 𝜃′; 𝜃′ = ℒ(𝜃′)

• For general 𝜃, ℒ 𝜃 − 𝑄 𝜃; 𝜃′ = σ𝑖=1
𝑛 KL 𝑃 𝑧 𝑥𝑖; 𝜃′ , 𝑃 𝑧 𝑥𝑖; 𝜃 ≥ 0

• Kullback-Leibler (KL) divergence: KL 𝑝, 𝑞 = E𝑧∼𝑝 ln
𝑝 𝑧

𝑞 𝑧

• Measures difference between distributions 

• Properties: 

• KL(𝑝| 𝑞 ≥ 0, for all 𝑝, 𝑞; 

• KL(𝑞| 𝑞 = 0, for all 𝑞
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ℒ(𝜃) 𝑄(𝜃; 𝜃′)

https://datascience.oneoffcoder.com/kullback-leibler-divergence.html



EM algorithm: the procedure

1. Initialize parameters 𝜃(1)

2. For 𝑛 = 1,2, …:

• E-step: for each example 𝑖, evaluate 𝑃 𝑧 𝑥𝑖; 𝜃(𝑛)  

    (This is for calculating 𝑄 𝜃; 𝜃 𝑛 = σ𝑖=1
𝑛 σ𝑧 𝑃 𝑧 𝑥𝑖; 𝜃(𝑛) ln

𝑃 𝑥𝑖,𝑧;𝜃

𝑃(𝑧∣𝑥𝑖;𝜃(𝑛))
)

• M-step: 𝜃(𝑛+1) ← argmax𝜃  𝑄 𝜃; 𝜃 𝑛

    (Performing MLE over an importance-weighted dataset of fully observed data) 

• Check convergence of either log-likelihood or parameters; if yes, return
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EM algorithm: convergence guarantee 

• Monotone improvement of likelihood function

• Illustration:    

                              𝜃′ = 𝜃 𝑛 , 𝜃′′ = 𝜃(𝑛+1) = argmax𝜃𝑄(𝜃, 𝜃 𝑛 )

 

• Therefore,

    ℒ 𝜃 𝑛 = 𝑄 𝜃 𝑛 , 𝜃 𝑛

                    ≤ 𝑄 𝜃 𝑛+1 , 𝜃 𝑛

                    ≤ ℒ 𝜃 𝑛+1

                    ≤ ℒ 𝜃 𝑛+2

                    ≤ ⋯
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EM algorithm: application to GMMs

• Recall: latent variable 𝑘 (cluster membership), parameters 𝜃 = 𝜋, 𝜇, Σ

• The E-step: 

• for each example 𝑖, evaluate 𝑃 𝑘𝑖 𝑥𝑖; 𝜃  for 𝜃 = 𝜃(𝑛)

• 𝑃 𝑘𝑖 = 𝑘 𝑥𝑖; 𝜃 =
𝑃(𝑘𝑖=𝑘, 𝑥𝑖;𝜃)

𝑃(𝑥𝑖;𝜃)
=

𝜋𝑘𝑁(𝑥𝑖;𝜇𝑘,Σ𝑘)

σ𝑐=1
𝐾 𝜋𝑐𝑁(𝑥𝑖;𝜇𝑐,Σ𝑐)

=: 𝛾𝑖𝑘

• 𝛾𝑖𝑘: the responsibility component 𝑘 has for generating 𝑥𝑖

    Conceptually, 𝛾𝑖𝑘 can be thought of as soft cluster membership of example i (e.g. cluster 1 = 
blue, 𝛾𝑖1 larger => bluer) based on current belief

21



EM algorithm: application to GMMs (cont’d)

• The M-step:

 𝜃(𝑛+1) ← argmax𝜃  𝑄(𝜃; 𝜃 𝑛 ), 

 where 𝑄 𝜃; 𝜃 𝑛 = σ𝑖=1
𝑛 σ𝑘 𝑃 𝑘𝑖 = 𝑘 𝑥𝑖; 𝜃(𝑛) ln

𝑃 𝑥𝑖,𝑘;𝜃

𝑃(𝑘∣𝑥𝑖;𝜃(𝑛))

 

 This is equivalent to argmax𝜃 σ𝑖=1
𝑛 σ𝑘 𝛾𝑖𝑘 ln 𝑃 𝑥𝑖 , 𝑘𝑖 = 𝑘; 𝜃

• Can view the above as the log-likelihood of weighted dataset 𝑥𝑖 , 𝑘 , 𝛾𝑖𝑘 𝑖∈ 𝑛 ,𝑘∈[𝐾]
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EM algorithm: application to GMMs (cont’d)

• How to solve

              max𝜃=(𝜋,𝜇,Σ) σ𝑖=1
𝑛 σ𝑘 𝛾𝑖𝑘 ln 𝑃 𝑥𝑖 , 𝑘𝑖 = 𝑘; 𝜃 ?

• This is MLE with fully-observed data with 𝑛𝐾 importance-weighted examples 𝑥𝑖 , 𝑘 , 𝛾𝑖𝑘 𝑖∈ 𝑛 ,𝑘∈[𝐾]

• We have seen its solution before: 

     𝜋𝑘 =
Γ𝑘

Γ

     𝜇𝑘 =
σ𝑖 𝛾𝑖𝑘 𝑥𝑖

Γ𝑘

           Σ𝑘 =
σ𝑖 𝛾𝑖𝑘 𝑥𝑖−𝜇𝑘 𝑥𝑖−𝜇𝑘

⊤

Γ𝑘

• Here Γ𝑘 = σ𝑖=1
𝑛 𝛾𝑖𝑘, Γ = σ𝑖,𝑘 𝛾𝑖𝑘 = 𝑛
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EM in action
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EM for GMM: 1-slide summary

• Initialize: 𝜋 ∈ Δ𝐾 ,  𝜇𝑘 ∈ ℝ𝑑 , Σ𝑘 ∈ ℝ𝑑×𝑑
𝑘=1
𝐾

• (E)xpectation step: for every 𝑖, 𝑘:

• 𝛾𝑖𝑘 =
𝜋𝑘 𝑁(𝑥𝑖;𝜇𝑘,Σ𝑘)

σ
𝑘′=1
𝐾 𝜋𝑘′ 𝑁(𝑥𝑖;𝜇𝑘′,Σ𝑘′)

• Let Γ𝑘 = σ𝑖=1
𝑛 𝛾𝑖𝑘

• (M)aximization step: for every 𝑘:

• 𝜇𝑘
′ =

1

Γ𝑘
σ𝑖=1

𝑛 𝛾𝑖𝑘𝑥𝑖

• Σ𝑘
′ =

1

Γ𝑘
σ𝑖=1

𝑛 𝛾𝑖𝑘 𝑥𝑖 − 𝜇𝑘
′ 𝑥𝑖 − 𝜇𝑘

′ ⊤

• 𝜋𝑘
′ =

Γ𝑘

𝑛
 

• Set 𝜇𝑘 ← 𝜇𝑘
′ ,  Σ𝑘 ← Σ𝑘

′ , 𝜋𝑘 ← 𝜋𝑘
′ ,

• Stop when: the log likelihood does not increase much or the parameters do not change much.

25

responsibility

soft counts

note we use 𝜇𝑘
′  rather than 𝜇𝑘



Tips

• Stopping criteria:

• Likelihood-based: 
ℒ 𝜃′ −ℒ 𝜃

ℒ 𝜃
≤ 𝜖

• Parameter-based: 𝜇𝑘 − 𝜇𝑘
′ + Σ𝑘 − Σ𝑘

′
𝐹 + 𝜋𝑘 − 𝜋𝑘

′ ≤ 𝜖

• Initialization of  𝜋, 𝜇, Σ

• E.g. 𝜋 ←
1

𝐾
, … ,

1

𝐾
, 𝜇 ←cluster centers of Lloyd’s algorithm, Σ = I

• Beware of pitfalls
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Pitfalls

• Maximum likelihood of GMM can result in severe overfitting

• In the log-likelihood expression σ𝑖=1
𝑛 ln 𝑃 𝑥𝑖; 𝜃 ,

   it is possible to set 𝜃 so that:

   for one example 𝑖, ln 𝑃 𝑥𝑖; 𝜃  is arbitrarily large

• Imagine Gaussian MLE on one data point: 

    max
𝜇,𝜎2

 ln 𝑁 𝑥1; 𝜇, 𝜎2 = max
𝜇,𝜎2

 ln
1

2𝜋𝜎2
exp −

𝑥−𝜇 2

2𝜎2

• To address this: 

• Regularization: penalize overly small Σ𝑘

• Detect overly small Σ𝑘 and restart EM

• Bayesian treatment: impose a prior on Σ𝑘’s
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Lloyd’s algorithm is EM in the limit
• Suppose we use EM for  maximize

𝜋, 𝜇,Σ
 𝐿 𝜋, 𝜇, Σ , subject to:

    for every 𝑘,

  Σ𝑘 = 𝜖 ⋅ 𝐼 ∈ ℝ𝑑×𝑑  for some 𝜖 > 0

  𝜋𝑘 =
1

𝐾

• Running the EM algorithm: 

• E-step: 

• 𝑝 𝑥 𝜇𝑘 , Σ𝑘) ∝  exp −
1

2𝜖
𝑥 − 𝜇𝑘  2

2

• 𝛾𝑖𝑘 =
𝜋𝑘 exp −

𝑥𝑖−𝜇𝑘
2

2𝜖

σ
𝑘′=1
𝐾 𝜋𝑘′ exp −

𝑥𝑖−𝜇𝑘′
2

2𝜖

 

• Imagine 𝐾 = 2
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(fix Σ𝑘 , 𝜋 throughout -- do not update them)

When 𝜖 → 0:
𝛾𝑖𝑘 = 1 if 𝜇𝑘 is the cluster center closest to 𝑥𝑖; 0 otherwise



Lloyd’s algorithm is EM in the limit

• Initialize: 𝜋 ∈ Δ𝐾 ,  𝜇𝑘 ∈ ℝ𝑑 , Σ𝑘 ∈ ℝ𝑑×𝑑
𝑘=1
𝐾

• (E)xpectation step:

• 𝛾𝑖𝑘 =
𝜋𝑘 𝑝 𝑥𝑖 𝑧𝑖=𝑘)

σ
𝑘′=1
𝐾 𝜋𝑘′ 𝑝 𝑥𝑖 𝑧𝑖=𝑘′)

• Let 𝑛𝑘 = σ𝑖=1
𝑛 𝛾𝑖𝑘

• (M)aximization step:

• 𝜇𝑘 =
1

𝑛𝑘
σ𝑖=1

𝑛 𝛾𝑖𝑘𝑥𝑖

• Σ𝑘 =
1

𝑛𝑘
σ𝑖=1

𝑛 𝛾𝑖𝑘 𝑥𝑖 − 𝜇𝑘 𝑥𝑖 − 𝜇𝑘
⊤

• 𝜋𝑘 =
𝑛𝑘

𝑛
 

• Stop when: the log likelihood does not increase much or parameter does not change much.
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𝛾𝑖𝑘 = 1 if 𝜇𝑘  is the cluster center closest to 𝑥𝑖; 0 otherwise

count how many points assigned to the centroid 𝜇𝑘

Imagine 𝜋 = Uniform, Σ𝑘 = 𝜖𝐼 with a very small 𝜖

update centroid 𝜇𝑘  as the mean of the points assigned to cluster 𝑘



Gaussian Mixture Models: additional remarks

• EM is not the only method that can maximizes likelihood in GMMs

• E.g. can just do gradient ascent on the likelihood function 

• Another popular approach: spectral methods 

• Key idea: use Method of Moments to estimate model parameters 

• Has provable guarantees when the model is ``well-specified’’ 

• Can be combined with EM 

• Generally, stronger assumption on data generating process

    => easier to learn

30http://www.phillong.info/stoc13/stoc13_ml_sanjoy_dasgupta.pdf



EM as a generic tool: additional remarks

• EM is universal: any situation where you have latent variables.

• E-step: compute the posterior probability (=responsibilities) for the latent variables

• M-step: use the responsibilities as ‘soft membership’, and find parameters that maximize 
𝑄 𝜃, 𝜃 𝑛  -- log-likelihood on an importance-weighted, fully-observed dataset

• Other popular examples:

• Semi-supervised learning
• Some labels are unobserved – the hidden labels are the 𝑧𝑖’s!

• Missing data

• Some features are often missing for various reason. (e.g., for survey, they just did not fill out)

• “Grading an example without an answer key” – CIML Sec 16.1

• Once you provide a generative model, you know how to apply EM
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Recap

• GMM: a generative model.

• Difference from supervised learning: we must infer the latent, unobserved variable.

• Connection to 𝑘-means and Lloyd’s algorithm

• The power of graphical models: specify reasonable generative model, and what you should do, 
ideally, is already well-defined. 

• The pain is in the computational complexity

• EM is one way to get around.

• Additional reading: Bishop, “Pattern Recognition and Machine Learning”, Chap. 9
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Backup
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Marginal Likelihood

More often, we have a joint distribution with observations x, unknown 
variables k, and parameters 𝜃   

Need to marginalize out latent variables, hence the name marginal likelihood:

In the GMM:
• 𝜃 = (𝜋, 𝜇, Σ)

• 𝑝 𝑘 𝜃 = 𝜋𝑘

•



Warmup: MLE for GMM with known cluster membership (cont’d)

max
𝜇𝑘,Σ𝑘

෍

𝑖:𝑘𝑖=𝑘

ln 𝑃 𝑥𝑖 𝑘𝑖 = 𝑘; 𝜇𝑘 , Σ𝑘

• Conceptually the same as the Gaussian MLE problem max
𝜇,Σ

σ𝑖 ln 𝑁(𝑥𝑖; 𝜇, Σ),  where 

                  𝑁 𝑥; 𝜇, Σ =
1

2𝜋 𝑑 Σ
exp −

1

2
𝑥 − 𝜇 ⊤Σ−1(𝑥 − 𝜇)

• From slide 5, we know its solution is

𝜇𝑘 = sample mean for examples from class 𝑘 =
1

𝑛𝑘
σ𝑖:𝑘𝑖=𝑘 𝑥𝑖

Σ𝑘 = sample mean for examples from class 𝑘 =
1

𝑛𝑘
σ𝑖:𝑘𝑖=𝑘 𝑥𝑖 − 𝜇𝑘 𝑥𝑖 − 𝜇𝑘

⊤   

35
https://www.youtube.com/watch?v=jAyTgkiaBbY



EM algorithm: application to GMMs (cont’d)

• How to compute

              argmax𝜃=(𝜋,𝜇,Σ) σ𝑖=1
𝑛 σ𝑘 𝛾𝑖𝑘 ln 𝑃 𝑥𝑖 , 𝑘𝑖 = 𝑘; 𝜃 ?

Using MLE for GMM with fully-observed data (recall slide), we have    

  𝜇𝑘 =
1

𝑛𝑘
σ𝑖:𝑘𝑖=𝑘 𝑥𝑖

     Σ𝑘 =
1

𝑛𝑘
σ𝑖:𝑘𝑖=𝑘 𝑥𝑖 − 𝜇𝑘 𝑥𝑖 − 𝜇𝑘

⊤

   (Now, for optimizing 𝑄 𝜃; 𝜃 𝑛 )

      𝜇𝑘 =
σ𝑖 𝛾𝑖𝑘 𝑥𝑖

σ𝑖 𝛾𝑖𝑘

           Σ𝑘 =
σ𝑖 𝛾𝑖𝑘 𝑥𝑖−𝜇𝑘 𝑥𝑖−𝜇𝑘

⊤

σ𝑖 𝛾𝑖𝑘
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Pitfalls

• Maximum likelihood of GMM can result in severe overfitting

• In the log-likelihood expression σ𝑖=1
𝑛 ln 𝑃 𝑥𝑖; 𝜃 ,

   it is possible to set 𝜃 so that:

   for one example 𝑖, ln 𝑃 𝑥𝑖; 𝜃  is arbitrarily large

• Imagine Gaussian MLE on one data point: 

    max
𝜇,𝜎2

 ln 𝑁 𝑥1; 𝜇, 𝜎2 = max
𝜇,𝜎2

 ln
1

2𝜋𝜎2
exp −

𝑥−𝜇 2

2𝜎2

• Solution: 

• Regularization: penalize overly small Σ𝑘

• Detect overly small Σ𝑘 and restart EM
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