CSC 480/580 Principles of Machine Learning

10 Probabilistic ML: Gaussian mixture models; Expectation-Maximization (EM)

Chicheng Zhang

Department of Computer Science

Probabilistic modeling: systematic approach for ML

- The recipe:
 - 1. Model how the data is generated by probabilistic models, but with parameters unspecified (modeling assumption / generative story)
 - 2. (Training) Learn the model parameter $\hat{\theta}$
 - 3. (Test) Make prediction / decision based on the learned model $P(z; \hat{\theta})$

Warm-up Example: estimate population height & weight

Suppose we have collected a sample of UA students height & weight data (x₁(1), x₁(2)), ..., (x_n(1), x_n(2))
 weight weight

Model it using a 2-d Gaussian distribution with <u>unknown</u>

mean & variance

- Train the model using maximum-likelihood
- What does the log-likelihood function look like?

height

Probability review: multivariate Gaussian

Multivariate Gaussian For RV $X \in \mathbb{R}^d$ with mean μ and <u>positive semidefinite</u> covariance matrix Σ , its probability density function (PDF) is ,

$$p(x) = |2\pi\Sigma|^{-1/2} \exp{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

A : matrix determinant of A

Interpretation

 μ : peak location of the PDF (mode)

 Σ : the covariance matrix; specifically when d = 2:

$$\Sigma = \begin{pmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{YX} & \sigma_Y^2 \end{pmatrix}$$

-diagonal entries: variance of each coordinate-off diagonal entries: correlation b/w coordinates

Warm-up Example: estimate population height & weight

• MLE: solve $\max_{\mu,\Sigma} \sum_{i} \ln P(x_i; \mu, \Sigma)$, where $P(x; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu)\right)$

Sample mean

- Observation 1: for any fixed Σ , the optimal μ is $\mu = \frac{1}{n} \sum_{i} x_{i}$ (Exercise)
- Observation 2: for any fixed μ , the optimal Σ is such that $\Lambda = \Sigma^{-1}$ equals

$$\underset{\Lambda}{\operatorname{argmax}} f(\Lambda) \coloneqq \frac{1}{2} \sum_{i} \ln|\Lambda| - \frac{1}{2} (x_{i} - \mu)^{\mathsf{T}} \Lambda(x_{i} - \mu)$$

• Fact: f is concave in Λ

Sample covariance matrix $u^{T} = 0 \Rightarrow \Sigma = {}^{1}\Sigma (u = u)(u = u)^{T}$

- $\nabla f(\Lambda) = 0 \Rightarrow n\Lambda^{-1} \sum_{i} (x_i \mu)(x_i \mu)^{\mathsf{T}} = 0 \Rightarrow \Sigma = \frac{1}{n} \sum_{i} (x_i \mu)(x_i \mu)^{\mathsf{T}}$
- Quick Q1: can you simplify the expressions when d = 1?
- Quick Q2: what if the data is importance-weighted?

Probabilistic clustering: Gaussian mixture model (GMM)

- Data: $S = \{x_1, \dots, x_n\} \subset \mathbb{R}^d$
- Given: *K* the number of clusters.
- Generative story:
 - $k \sim \text{Categorical}(\pi)$ (hidden latent variable)
 - $x \mid k \sim N(\mu_k, \Sigma_k)$

Parameters to learn:

- Cluster weight $\pi = (\pi_1, ..., \pi_K) \in \Delta^{K-1}$
- Cluster location $\mu = (\mu_1, ..., \mu_K)$
- Cluster shape (covariance matrix) $\Sigma = (\Sigma_1, ..., \Sigma_K)$

Marginal Likelihood

More often, we have a joint distribution with observations x, latent variables k, and parameters θ

$$p(k, x \mid \theta) = p(k \mid \theta)p(x \mid k, \theta)$$

Need to marginalize out latent variables, hence the name marginal likelihood: $p(x \mid \theta) = \sum_{k=1}^{K} p(k \mid \theta) p(x \mid k, \theta)$

In GMM: $\theta = (\pi, \mu, \Sigma)$

- Observation *x*, latent variable *k*
- $p(k \mid \theta) = \pi_k, \ p(x \mid k, \theta) = \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} \exp\left(-\frac{1}{2}(x \mu_k)^\top \Sigma_k^{-1}(x \mu_k)\right) =: N(x; \mu_k, \Sigma_k)$ • $p(x \mid \theta) = \sum_{k=1}^K \pi_k N(x; \mu_k, \Sigma_k)$

Maximum likelihood estimation for GMM

• Maximum likelihood estimation:

$$\underset{\pi,\mu,\Sigma}{\operatorname{argmax}} \sum_{i} \log \left(\sum_{k=1}^{K} \pi_{k} N(x_{i}; \mu_{k}, \Sigma_{k}) \right)$$

- How to solve it?
- How do we get the cluster assignments?

Illustration

- Mixture of 3 Gaussians
- (a) is ground truth (we don't know this -- the k_i (color) for each example x_i are hidden).
- (b) is what we see, (c) is what the algorithm can recover.

GMM for clustering: algorithms

• Maximum likelihood estimation

 $\underset{\pi,\mu,\Sigma}{\operatorname{argmax}} \sum_{i} \log(\sum_{k=1}^{K} \pi_k N(x_i; \mu_k, \Sigma_k))$

is (1) computationally hard (2) ill-posed (see later slides)

Journal of Machine Learning Research 18 (2018) 1-11

Submitted 12/16; Revised 12/16; Published 4/18

Maximum Likelihood Estimation for Mixtures of Spherical Gaussians is NP-hard

Christopher Tosh Sanjoy Dasgupta Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92093-0404, USA

CTOSH@CS.UCSD.EDU DASGUPTA@CS.UCSD.EDU

- How to design computationally efficient algorithms that can approximately maximize the loglikelihood function?
- Observation: if for each data point *i*, we not only have *x_i* but also have *k_i*, (supervised learning setting)
 then MLE is easy to obtain
- Let's see why & why this is useful..

Warmup: MLE for GMM with known cluster membership

Warmup: MLE for GMM with known cluster membership (cont'd)

$$\max_{\mu_k, \Sigma_k} \sum_{i:k_i=k} \ln P(x_i \mid k_i = k; \mu_k, \Sigma_k)$$

Equivalent to Gaussian MLE problem

 $\mu_k = [\text{sample mean for examples from class } k] = \frac{1}{n_k} \sum_{i:k_i=k} x_i$

 $\Sigma_k = [\text{sample covariance matrix for examples from class } k] = \frac{1}{n_k} \sum_{i:k_i=k} (x_i - \mu_k) (x_i - \mu_k)^{\top}$

https://www.youtube.com/watch?v=jAyTgkiaBbY

Warmup: MLE for GMM with known cluster membership (cont'd)

- In summary, the MLE for GMM with known-cluster membership data (x_i, k_i) 's is given by:
- For every *k*:

$$\mu_k = \frac{1}{n_k} \sum_{i:k_i=k} x_i$$

$$\Sigma_k = \frac{1}{n_k} \sum_{i:k_i=k} (x_i - \mu_k) (x_i - \mu_k)^{\mathsf{T}}$$

$$\pi_k = \frac{n_k}{n}$$

- What if the dataset is importance weighted: $((x_i, k_i), w_i), i = 1, ..., n$?
- The weighted MLE solution is: for every k:

$$\begin{split} \mu_k &= \frac{1}{W_k} \sum_{i:k_i=k} w_i \ x_i \\ \Sigma_k &= \frac{1}{W_k} \sum_{i:k_i=k} w_i (x_i - \mu_k) (x_i - \mu_k)^\top \\ \pi_k &= \frac{W_k}{W} \end{split} \end{split}$$
 Here, $W_k = \sum_{i:k_i=k} w_i$, $W = \sum_i w_i$

GMM for clustering: algorithms

- Coming back to the original question..
- What if the cluster memberships are unknown?
- $\underset{\pi,\mu,\Sigma}{\operatorname{argmax}} \sum_{i} \log(\sum_{k=1}^{K} \pi_k N(x_i; \mu_k, \Sigma_k))$

- Expectation-Maximization (EM) algorithm (Dempster et al, 1977) provides a *general* approach for approximate MLE for probabilistic models with latent variables
 - Has wide applications well-beyond GMMs
- High-level idea: *reduce* to MLE for fully-observed probabilistic models

EM algorithm: the idea

• Given: a probabilistic model $P(x, z; \theta)$,

with x being the observed part, z being the latent part

- Would like to maximize the log-likelihood on the observed data: $\ln P(x; \theta) = \ln \sum_z P(x, z; \theta)$
- Maximizing $\ln \sum_{z} P(x, z; \theta)$ is intractable => instead, maximize a lower bound of it $\ln P(x; \theta) = \ln \sum_{z} P(x, z; \theta) = \ln \sum_{z} P(z \mid x; \theta') \cdot \frac{P(x, z; \theta)}{P(z \mid x; \theta')}$

 $\geq \sum_{z} P(z \mid x; \theta') \ln \frac{P(x, z; \theta)}{P(z \mid x; \theta')} \quad \text{(Jensen's inequality & concavity of ln func.)}$

• With *n* iid examples,

Jensen's Inequality

 $f(\mathbb{E}[X]) \le \mathbb{E}[f(X)]$

f(x)

Valid for both discrete (expectations are sums) and continuous (expectations are integrals) random variables, for any convex function f.

xλ

а

- Maximizing Q(θ; θ') ⇔ maximizing the log-likelihood of model θ on an *importance-weighted* set of *fully-observed* data
- Example:

	Value	$P(z = 1 \mid x_i; \theta')$	$P(z = 2 \mid x_i; \theta')$
<i>x</i> ₁	(4.2, -7.1)	0.2	0.8
<i>x</i> ₂	(0.05, -1.2)	0.98	0.02

(<i>x</i> , <i>z</i>) value	weight
(4.2, -7.1), 1	0.2
(4.2, -7.1), 2	0.8
(0.05, -1.2), 1	0.98
(0.05, -1.2), 2	0.02

EM algorithm: the idea

- The lower bound approximate $Q(\theta; \theta')$ is sometimes tight
 - At $\theta = \theta', Q(\theta'; \theta') = \mathcal{L}(\theta')$
 - For general θ , $\mathcal{L}(\theta) Q(\theta; \theta') = \sum_{i=1}^{n} \text{KL}(P(z \mid x_i; \theta'), P(z \mid x_i; \theta)) \ge 0$
- Kullback-Leibler (KL) divergence: $KL(p,q) = E_{z \sim p} \left[ln \frac{p(z)}{q(z)} \right]$
- Measures difference between distributions
- Properties:
 - $\operatorname{KL}(p||q) \ge 0$, for all p, q;
 - KL(q||q) = 0, for all q

0.25

0.15

0.10

Model 2

EM algorithm: the procedure

- 1. Initialize parameters $\theta^{(1)}$
- 2. For n = 1, 2, ...:
 - E-step: for each example *i*, evaluate $P(z | x_i; \theta^{(n)})$

$$f_{i}(\theta)$$

$$(0, \theta, \theta')$$

$$\theta'$$

(This is for calculating
$$Q(\theta; \theta^{(n)}) = \sum_{i=1}^{n} \sum_{z} P(z \mid x_i; \theta^{(n)}) \ln \frac{P(x_i, z; \theta)}{P(z \mid x_i; \theta^{(n)})}$$
)

• M-step: $\theta^{(n+1)} \leftarrow \operatorname{argmax}_{\theta} Q(\theta; \theta^{(n)})$

(Performing MLE over an importance-weighted dataset of fully observed data)

• Check convergence of either log-likelihood or parameters; if yes, return

EM algorithm: convergence guarantee

- Monotone improvement of likelihood function
- Illustration:

$$\theta' = \theta^{(n)}, \ \theta'' = \theta^{(n+1)} = \operatorname{argmax}_{\theta} Q(\theta, \theta^{(n)})$$

- Therefore,
 - $\begin{aligned} \mathcal{L}(\theta^{(n)}) &= Q(\theta^{(n)}, \theta^{(n)}) \\ &\leq Q(\theta^{(n+1)}, \theta^{(n)}) \\ &\leq \mathcal{L}(\theta^{(n+1)}) \\ &\leq \mathcal{L}(\theta^{(n+2)}) \\ &\leq \cdots \end{aligned}$

L(0)

EM algorithm: application to GMMs

- Recall: latent variable k (cluster membership), parameters $\theta = (\pi, \{\mu, \Sigma\})$
- The E-step:
 - for each example *i*, evaluate $P(k_i | x_i; \theta)$ for $\theta = \theta^{(n)}$

•
$$P(k_i = k \mid x_i; \theta) = \frac{P(k_i = k, x_i; \theta)}{P(x_i; \theta)} = \frac{\pi_k N(x_i; \mu_k, \Sigma_k)}{\sum_{c=1}^K \pi_c N(x_i; \mu_c, \Sigma_c)} =: \gamma_{ik}$$

• γ_{ik} : the *responsibility* component k has for generating x_i

EM algorithm: application to GMMs (cont'd)

• The M-step:

$$\theta^{(n+1)} \leftarrow \operatorname{argmax}_{\theta} Q(\theta; \theta^{(n)}),$$

where $Q(\theta; \theta^{(n)}) = \sum_{i=1}^{n} \sum_{k} P(k_i = k \mid x_i; \theta^{(n)}) \ln \frac{P(x_i, k; \theta)}{P(k \mid x_i; \theta^{(n)})}$

This is equivalent to $\operatorname{argmax}_{\theta} \sum_{i=1}^{n} \sum_{k} \gamma_{ik} \ln P(x_i, k_i = k; \theta)$

• Can view the above as the log-likelihood of weighted dataset $\{(x_i, k), \gamma_{ik}\}_{i \in [n], k \in [K]}$

EM algorithm: application to GMMs (cont'd)

• How to solve

$$\max_{\theta = (\pi, \mu, \Sigma)} \sum_{i=1}^{n} \sum_{k} \gamma_{ik} \ln P(x_i, k_i = k; \theta)?$$

- This is MLE with fully-observed data with nK importance-weighted examples $\{(x_i, k), \gamma_{ik}\}_{i \in [n], k \in [K]}$
- We have seen its solution before:

$$\pi_{k} = \frac{\Gamma_{k}}{\Gamma}$$
$$\mu_{k} = \frac{\sum_{i} \gamma_{ik} x_{i}}{\Gamma_{k}}$$
$$\Sigma_{k} = \frac{\sum_{i} \gamma_{ik} (x_{i} - \mu_{k}) (x_{i} - \mu_{k})^{\mathsf{T}}}{\Gamma_{k}}$$

• Here $\Gamma_k = \sum_{i=1}^n \gamma_{ik}$, $\Gamma = \sum_{i,k} \gamma_{ik} = n$

EM in action

EM for GMM: 1-slide summary

- Initialize: $\pi \in \Delta^K$, $\{\mu_k \in \mathbb{R}^d, \Sigma_k \in \mathbb{R}^{d \times d}\}_{k=1}^K$
- (E)xpectation step: for every *i*, *k*:

•
$$\gamma_{ik} = \frac{\pi_k N(x_i; \mu_k, \Sigma_k)}{\sum_{k'=1}^K \pi_{k'} N(x_i; \mu_{k'}, \Sigma_{k'})}$$

• Let $\Gamma_k = \sum_{i=1}^n \gamma_{ik}$

- (M)aximization step: for every k:
 - $\mu'_k = \frac{1}{\Gamma_k} \sum_{i=1}^n \gamma_{ik} x_i$ • $\Sigma'_k = \frac{1}{\Gamma_k} \sum_{i=1}^n \gamma_{ik} (x_i - \mu'_k) (x_i - \mu'_k)^{\mathsf{T}}$ • $\pi'_k = \frac{\Gamma_k}{n}$
 - Set $\mu_k \leftarrow \mu'_k$, $\Sigma_k \leftarrow \Sigma'_k$, $\pi_k \leftarrow \pi'_k$,

soft counts

Tips

- Stopping criteria:
 - Likelihood-based: $\frac{|\mathcal{L}(\theta') \mathcal{L}(\theta)|}{|\mathcal{L}(\theta)|} \leq \epsilon$
 - Parameter-based: $\|\mu_k \mu'_k\| + \|\Sigma_k \Sigma'_k\|_F + \|\pi_k \pi'_k\| \le \epsilon$
- Initialization of π , { μ , Σ }

• E.g.
$$\pi \leftarrow \left(\frac{1}{K}, \dots, \frac{1}{K}\right), \mu \leftarrow \text{cluster centers of Lloyd's algorithm, } \Sigma = I$$

• Beware of pitfalls

Pitfalls

- Maximum likelihood of GMM can result in severe overfitting
- In the log-likelihood expression ∑_{i=1}ⁿ ln P(x_i; θ), it is possible to set θ so that:
 for one example i, ln P(x_i; θ) is arbitrarily large
- Imagine Gaussian MLE on one data point:

$$\max_{\mu,\sigma^2} \ln N(x_1;\mu,\sigma^2) = \max_{\mu,\sigma^2} \ln \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \right)$$

- To address this:
 - Regularization: penalize overly small Σ_k
 - Detect overly small Σ_k and restart EM
 - Bayesian treatment: impose a prior on Σ_k 's

Lloyd's algorithm is EM in the limit

• Suppose we use EM for $\max_{\pi,\{\mu,\Sigma\}} L(\pi,\{\mu,\Sigma\})$, subject to:

for every k,

$$\Sigma_k = \epsilon \cdot I \in \mathbb{R}^{d \times d} \text{ for some } \epsilon > 0$$
$$\pi_k = \frac{1}{K}$$

(fix Σ_k , π throughout -- do not update them)

- Running the EM algorithm:
- E-step:

•
$$p(x \mid \mu_k, \Sigma_k) \propto \exp\left(-\frac{1}{2\epsilon} \mid \mid x - \mu_k \mid \mid_2^2\right)$$

• $\gamma_{ik} = \frac{\pi_k \exp\left(-\frac{\left\|x_i - \mu_k\right\|^2}{2\epsilon}\right)}{\sum_{k'=1}^K \pi_{k'} \exp\left(-\frac{\left\|x_i - \mu_{k'}\right\|^2}{2\epsilon}\right)}$

• Imagine K = 2

When $\epsilon \to 0$: $\gamma_{ik} = 1$ if μ_k is the cluster center closest to x_i ; 0 otherwise

Lloyd's algorithm is EM in the limit

- Initialize: $\pi \in \Delta^{K}$, $\{\mu_{k} \in \mathbb{R}^{d}, \Sigma_{k} \in \mathbb{R}^{d \times d}\}_{k=1}^{K}$ Imagine $\pi =$ Uniform, $\Sigma_{k} = \epsilon I$ with a very small ϵ
- (E)xpectation step:

•
$$\gamma_{ik} = \frac{\pi_k p(x_i \mid z_i = k)}{\sum_{k'=1}^{K} \pi_{k'} p(x_i \mid z_i = k')}$$

• Let $n_k = \sum_{i=1}^n \gamma_{ik}$

 $\gamma_{ik} = 1$ if μ_k is the cluster center closest to x_i ; 0 otherwise

count how many points assigned to the centroid μ_k

• (M)aximization step:

update centroid μ_k as the mean of the points assigned to cluster k

• Stop when: the log likelihood does not increase much or parameter does not change much.

Gaussian Mixture Models: additional remarks

- EM is not the only method that can maximizes likelihood in GMMs
 - E.g. can just do gradient ascent on the likelihood function

- Another popular approach: spectral methods
 - Key idea: use *Method of Moments* to estimate model parameters
 - Has provable guarantees when the model is ``well-specified"
 - Can be combined with EM

Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing

Yuchen Zhang, Xi Chen, Dengyong Zhou, Michael I. Jordan

• Generally, stronger assumption on data generating process

=> easier to learn

http://www.phillong.info/stoc13/stoc13_ml_sanjoy_dasgupta.pdf

Gradient-Based Training of Gaussian Mixture Models for High-Dimensional Streaming Data

Alexander Gepperth¹ · Benedikt Pfülb¹

Accepted: 15 July 2021 / Published online: 17 August 2021 © The Author(s) 2021

Algorithms that assume a certain amount of separation:

30

EM as a generic tool: additional remarks

- **EM is universal**: any situation where you have latent variables.
 - E-step: compute the posterior probability (=responsibilities) for the latent variables
 - M-step: use the responsibilities as 'soft membership', and find parameters that maximize $Q(\theta, \theta^{(n)})$ -- log-likelihood on an importance-weighted, fully-observed dataset
- Other popular examples:
 - Semi-supervised learning
 - Some labels are unobserved the hidden labels are the z_i 's!
- Missing data
 - Some features are often missing for various reason. (e.g., for survey, they just did not fill out)
 - "Grading an example without an answer key" CIML Sec 16.1
 - Once you provide a generative model, you know how to apply EM

Recap

- GMM: a generative model.
- Difference from supervised learning: we must infer the latent, unobserved variable.
- Connection to k-means and Lloyd's algorithm
- The power of graphical models: specify reasonable generative model, and what you should do, ideally, is already well-defined.
 - The pain is in the computational complexity
 - EM is one way to get around.
- Additional reading: Bishop, "Pattern Recognition and Machine Learning", Chap. 9

Backup

Marginal Likelihood

More often, we have a joint distribution with observations x, unknown variables k, and parameters θ

$$p(k, x \mid \theta) = p(k \mid \theta)p(x \mid k, \theta)$$

Need to marginalize out latent variables, hence the name marginal likelihood: $p(x \mid \theta) = \sum_{k=1}^{K} p(k \mid \theta) p(x \mid k, \theta)$

In the GMM:

- $\theta = (\pi, \mu, \Sigma)$
- $p(k \mid \theta) = \pi_k$

Warmup: MLE for GMM with known cluster membership (cont'd)

$$\max_{\mu_k, \Sigma_k} \sum_{i:k_i=k} \ln P(x_i \mid k_i = k; \mu_k, \Sigma_k)$$

• Conceptually the same as the Gaussian MLE problem $\max_{\mu,\Sigma} \sum_{i} \ln N(x_i; \mu, \Sigma)$, where

$$N(x;\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu)\right)$$

• From slide 5, we know its solution is

 μ_k = sample mean for examples from class $k = \frac{1}{n_k} \sum_{i:k_i=k} x_i$

$$\Sigma_k$$
 = sample mean for examples from class $k = \frac{1}{n_k} \sum_{i:k_i=k} (x_i - \mu_k) (x_i - \mu_k)^{\mathsf{T}}$

EM algorithm: application to GMMs (cont'd)

• How to compute

$$\operatorname{argmax}_{\theta=(\pi,\mu,\Sigma)}\sum_{i=1}^{n}\sum_{k}\gamma_{ik}\ln P(x_{i},k_{i}=k;\theta)$$

Using MLE for GMM with fully-observed data (recall slide), we have

 $\mu_k = \frac{1}{n_k} \sum_{i:k_i = k} x_i$

$$\Sigma_k = \frac{1}{n_k} \sum_{i:k_i=k} (x_i - \mu_k) (x_i - \mu_k)^{\mathsf{T}}$$

(Now, for optimizing $Q(\theta; \theta^{(n)})$)

$$\mu_{k} = \frac{\sum_{i} \gamma_{ik} x_{i}}{\sum_{i} \gamma_{ik}}$$
$$\Sigma_{k} = \frac{\sum_{i} \gamma_{ik} (x_{i} - \mu_{k}) (x_{i} - \mu_{k})^{\mathsf{T}}}{\sum_{i} \gamma_{ik}}$$

Pitfalls

- Maximum likelihood of GMM can result in severe overfitting
- In the log-likelihood expression $\sum_{i=1}^{n} \ln P(x_i; \theta)$, it is possible to set θ so that:

for one example *i*, $\ln P(x_i; \theta)$ is arbitrarily large

• Imagine Gaussian MLE on one data point:

$$\max_{\mu,\sigma^2} \ln N(x_1;\mu,\sigma^2) = \max_{\mu,\sigma^2} \ln\left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)\right)$$

- Solution:
 - Regularization: penalize overly small Σ_k
 - Detect overly small Σ_k and restart EM

https://www2.karlin.mff.cuni.cz/~maciak/NMST539/cvicenie2018_4.html

