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Outline

• Support Vector Machines

• Nonlinear models
• Basis functions, kernels
• Neural networks

• Unsupervised learning: clustering
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Support vector machines
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Classification

For this section (SVMs):

• We will focus on classification 

with binary labels

• We will use the convention that the labels of examples are 
in {−1,+1}



Linear classifier is a hyperplane
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A linear classifier in d dimensions is given 

by a hyperplane, defined as follows:

For points that lie on the hyperlane, we have:
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Notation: inner product



Separating Hyperplane
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A hyperplane h(x) splits the original d-

dimensional space into two half-spaces. 

If the input dataset is linearly separable:
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Separating Hyperplane: weight vector
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Let a1 and a2 be two arbitrary points that lie on 

the hyperplane, we have:

Subtracting one from the other:

Fact The weight vector w is orthogonal to 

the hyperplane.
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w also known as the normal vector 



Linear Decision Boundary

Any boundary that separates classes is equally good on training data

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

But are they equally good on unseen test data?

Which boundary is better, red or green?

http://www-bcf.usc.edu/~gareth/ISL/


Classifier Margin

The margin measures minimum 
distance between each class and the 
decision boundary

Observation Decision boundaries with 
larger margins are more likely to 
generalize to unseen data

Idea Learn the classifier with the largest 
margin that still separates the data…

…we call this a max-margin classifier



Background: distance of a point to decision boundary

A linear classifier is given by

Decision boundary is now at 𝑓(𝑥) = 0 and 
distance of 𝑥 to it is: 

Where the norm of the weights is 

Known as the distance from a 

point to a plane equation:

wiki/Distance_from_a_point_to_a_plane

https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_plane


Example 

Linear classifier: 𝑓 𝑥 = 0.8𝑥1 + 0.6𝑥2 + 1

Decision boundary: 0.8𝑥1 + 0.6𝑥2 + 1 = 0

Distance of (2,2) to the boundary?

Distance of (-2,-3) to the boundary?

Here distances are signed: 

sign represents which side the point is at 

i.e, the predicted label 

0.8 × 2 + 0.6 × 2 + 1

0.82 + 0.62
= 3.8

0.8 × −2 + 0.6 × (−3) + 1

0.82 + 0.62
= −2.4

+

_



Classification margin

Given linear classifier 𝑤 ⋅ 𝑥 + 𝑏, its classification margin on 

labeled example (𝑥, 𝑦) is defined as 
𝑦 𝑤⋅𝑥+𝑏

||𝑤||2

Example 𝑓 𝑥 = 0.8𝑥1 + 0.6𝑥2 + 1,

Margin > 0 ⇔ correct classification 

Larger margin: correct with higher confidence

+

margin = +1 × 3.8 = 3.8

margin = − −2.4 = 2.4

margin = −1 × 3.8 = −3.8

𝒙 𝒚

(2,2) +

(−2,−3) −

(2,2) −

||𝑤||2 = 1

_

_



Margin and Support Vectors

Over all n points, the margin of the linear 

classifier is the minimum distance of a 

point from the separating hyperplane: 

All the points that achieve this minimum 

distance are called support vectors.

13



Maximum margin classifier

We can formulate finding a maximum

margin classifier as an optimization problem:

Find 𝑤, 𝑏,𝑀 ≥ 0 such that

maximize 𝑀

with the constraints that 
𝑦𝑖 𝑤⋅𝑥𝑖+𝑏

||𝑤||2
≥ 𝑀 for all 𝑖 Allows 

large M Does not 

allows large M

𝑤1, 𝑏1
𝑤2, 𝑏2



Math Interlude: optimization problems

• The above falls to the general form of 
maximize 𝑓(𝑥)

subject to 

𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… ,𝑚

• These are called constrained optimization 
problems

• Due to the constraints, finding the maximizer 
requires more care.. 

• Still, solvable by many standard packages

x: Optimization 

variables

constraints

unconstrained maximizer

constrained maximizer



Math Interlude: optimization problems

Example Find the solution of 

maximize −𝑥2 subject to 𝑥 ≥ 1 and 𝑥 ≤ 3

Solution We can draw a picture.. 

The objective is maximized at 𝑥 = 1

Note: the constrained maximizer is 

not the vertex of the parabola



Support vector machine: extension

The maximum margin solution can be sensitive to outliers



Support vector machine: extension

The maximum margin solution can be sensitive to outliers

Maybe prone to overfitting!



Support vector machine: extension

• The maximum margin solution may not even exist

Perhaps requiring the output 

classifier to predict every example 

correctly is too strict?

Solution: soft margins – allow 

mistakes on some training examples

requirement of “hard margins”



Soft margin support vector machines

Find 𝑤, 𝑏,𝑀, such that

maximize 𝑀

with the constraints that 
𝑦𝑖 𝑤⋅𝑥𝑖+𝑏

||𝑤||2
≥ 𝑀(1 − 𝜉𝑖) for all 𝑖

and 𝜉𝑖 ≥ 0, σ𝑖 𝜉𝑖 ≤ 𝐶

𝜉𝑖: slack variables 

allows some examples to be on the wrong side

𝐶: # in-margin examples allowed 

𝜉𝑖 = 2

𝑀

other 𝜉𝑖 = 0



Soft margin support vector machines

• Large 𝐶

Many points inside the margin,

many points on the wrong side

of the line



Soft margin support vector machines

• Smaller 𝐶

Fewer points inside the margin,

Fewer points on the wrong side

of the line



Soft margin support vector machines

• Even smaller 𝐶

Even fewer points inside the margin,

Very few points on the wrong side

of the line

Smaller 𝐶 => More overfitting => Lower bias, higher complexity 

As usual, we can choose 𝐶 by cross validation 



Nonlinear classification models
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Nonlinear basis functions; kernels
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Linear Models

Linear Regression Fit a linear 
function to the data,

[ Image: Murphy, K. (2012) ] [ Image: Hastie et al. (2001) ]

Logistic Regression Learn a 
decision boundary that is linear in the 
data,



Nonlinear Data

What if our data are not
well-described by a linear 

function?

What if classes are not 
linearly-separable?

[Source: Murphy, K. (2012) ]



Nonlinear prediction problems

• Nearest neighbor methods are OK, but they suffer from the 
curse of dimensionality

In high dimensions, all points are (kind-of) far from each other

Alternative approach:

We can reduce learning nonlinear models

to learning linear models

For high-dimensional data, 

most cells are empty!



Basis Functions

• A basis function can be any function of the input features X

• Define a set of m basis functions

• Fit a linear model in terms of basis functions,

• Model is linear in the basis transformations

• Model is nonlinear in the data X



Why do Basis Functions help?

Not Linearly separable Linearly separable

𝜙 𝑥1, 𝑥2 = (𝑥1, 𝑥2, 𝑥1
2 + 𝑥2

2)



Common “All-Purpose” Basis Functions

• Linear basis functions recover the original linear model,

• Quadratic                     or                         capture 2nd order interactions

• An order p polynomial                               captures higher-order 
nonlinearities (but requires O(𝑑𝑝) parameters)

• Nonlinear transformation of single inputs,

• An indicator function specifies a region of the input,

Returns mth dimension of X





Example 1: Polynomial Basis Functions

Create three two-dimensional data points [0,1], [2,3], [4,5]:

Compute quadratic features                                     ,

These are now our new data and ready to fit a model…



Example 2: Polynomial Regression

Create a 3rd order polynomial (cubic) regression data,

Create cubic features                     ,



Example: Polynomial Regression



Example: Piecewise Constant Regression

Decompose the input space into 3 regions 
with indicator basis functions,

Fit linear regression model,

Effectively fits 3 constant functions to 
data in each region

[Source: Hastie et al. (2001)]



Kernels

Fact Many machine learning algorithms output linear models 
of the form 𝑤 = σ𝑖 𝛼𝑖 𝑥𝑖 and thus makes prediction by 

෍

𝑖

𝛼𝑖 𝑥𝑖 ⋅ 𝑥 + 𝑏

when learning with basis functions, the trained models make 
prediction by 

෍

𝑖

𝛼𝑖 𝜙(𝑥𝑖) ⋅ 𝜙 𝑥 + 𝑏

popular kernels: polynomial, radial

Sometimes called ‘dual variables’ Examples: SVM, logistic regression

kernel: generalizes inner products; 

captures similarity between examples 



Kernel SVM

Applying kernel SVMs to nonlinear data

polynomial (d=3) kernel radial kernel





Example: Fisher’s Iris Dataset

Train 8-degree polynomial kernel SVM classifier,

[ Source: https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/ ]

Generate predictions on held-out test data,

Show confusion matrix and classification accuracy,

https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/


Kernel SVM in Scikit Learn

• General kernel-based SVM lives in:

sklearn.svm.svc(kernel=‘kernel_name’)

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC


Backup



Example: Piecewise Linear Regression

Decompose the input space into 3 regions 
with basis functions,

Fit linear regression model,

Effectively fits 3 linear regressions 
independently to data in each region

Regression lines are discontinuous

at boundary points

[Source: Hastie et al. (2001)]



Example: Piecewise Linear Regression

Enforce constraint that lines agree at 
boundary points,

Where

An improvement, but generally prefer smoother functions…

[Source: Hastie et al. (2001)]



[Source: Hastie et al. (2001)]

Replace linear basis 
functions with 
polynomial,

Additional constraints 
ensure smooth 1st and 

2nd derivatives at 
boundaries



Max-Margin Classifier (Linear Separable Case)

Minimum margin over

all training data

Maximize the

minimum margin

Find the parameters (w,b) that maximize the smallest 
margin over all the training data

46



Normalized margin

Given linear classifier 𝑤 ⋅ 𝑥 + 𝑏, its normalized classification 
margin on labeled example (𝑥, 𝑦) is defined as

𝑦 𝑤 ⋅ 𝑥 + 𝑏

||𝑤||2

Interpretation how correct 



Classification margin

Given linear classifier 𝑤 ⋅ 𝑥 + 𝑏, its classification margin on 
labeled example (𝑥𝑖 , 𝑦𝑖) is defined as 𝑦𝑖 (𝑤 ⋅ 𝑥𝑖 + 𝑏)

Example for example (2,2) with label +, 

for example (-2,-3) with label -, 

for example (2,2) with label -: 

0.8𝑥1 + 0.6𝑥2 + 1

+

margin = + 0.8 × 2 + 0.6 × 2 + 1 = 3.8

margin = − 0.8 × −2 + 0.6 × −3 + 1 = 2.4

margin = − 0.8 × 2 + 0.6 × 2 + 1 = −3.8
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